首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   86篇
  2021年   5篇
  2019年   3篇
  2018年   2篇
  2016年   3篇
  2015年   11篇
  2014年   12篇
  2013年   5篇
  2012年   11篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   9篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1980年   9篇
  1979年   6篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
1.
The nucleotide sequence of the fabA gene encoding beta-hydroxydecanoyl thioester dehydrase, a key enzyme of the unsaturated fatty acid synthesis pathway of Escherichia coli, has been determined by the dideoxynucleotide sequencing technique. Most of the sequence was obtained by sequencing intragenic insertions of the transposon, Tn1000, isolated in vivo. A synthetic primer complementary to a portion of the inverted repeat sequences at the ends of the transposon was used to prime DNA synthesis into the flanking fabA sequences. The gene is composed of 516 nucleotides (171 amino acid residues) encoding a protein with a molecular weight of 18,800. Approximately half of the derived amino acid sequence was confirmed by automated Edman sequencing of peptides obtained by cyanogen bromide cleavage. The active site histidine residue (His-70) has been identified by analysis of the peptides labeled by reaction with 14C-labeled 3-decynoyl-N-acetylcysteamine, a specific mechanism-activated inhibitor. A cysteine residue (Cys-69) adjacent to the active site histidine may play the role in catalysis previously assigned to a tyrosine residue. We also report a simplified purification process for the dehydrase beginning with extracts of a brain which greatly overproduces the enzyme.  相似文献   
2.
Escherichia coli K-12 mutants constitutive for the synthesis of the enzymes of fatty acid degradation (fad) synthesize significantly less unsaturated fatty acid (UFA) than do wild-type (fadR+) strains. The constitutive fadR mutants synthesize less UFA than do fadR+) strains both in vivo and in vitro. The inability of fadR strains to synthesize UFAs at rates comparable to those of fadR+ strains is phenotypically asymptomatic unless the fadR strain also carries a lesion in fabA, the structural gene for beta-hydroxydecanoyl-thioester dehydrase. Unlike fadR+ fabA(Ts) mutants, fadR fabA(Ts) strains synthesize insufficient UFA to support their growth even at low temperatures and, therefore, must be supplemented with UFA at both low and high temperatures. The low levels of UFA in fadR strains are not due to the constitutive level of fatty acid-degrading enzymes in these strains. These results suggest that a functional fadR gene is required for the maximal expression of UFA biosynthesis in E. coli.  相似文献   
3.
The biochemical basis for the inhibition of fatty acid biosynthesis in Escherichia coli by the antibiotic thiolactomycin was investigated. A biochemical assay was developed to measure acetoacetyl-acyl carrier protein (ACP) synthase activity, a recently discovered third condensing enzyme from E. coli (Jackowski, S., and Rock, C.O. (1987) J. Biol. Chem. 262, 7927-7931). In contrast to the other two condensing enzymes in E. coli, acetoacetyl-ACP synthase (synthase III) condensed malonyl-ACP with acetyl-CoA, rather than with acetyl-ACP. The concentration dependence of thiolactomycin inhibition of fatty acid biosynthesis in vivo was the same as the inhibition of acetoacetyl-ACP synthase activity in vitro indicating that the two phenomena were related. A thiolactomycin-resistant mutant (strain CDM5) was isolated. The specific activity of acetoacetyl-ACP synthase in extracts from this mutant was 10-fold lower than in extracts from its thiolactomycin-sensitive parent resulting in a marked defect in the ability of strain CDM5 to incorporate acetyl-CoA into fatty acids in vitro. The residual acetoacetyl-ACP synthase activity in the resistant strain was refractory to thiolactomycin inhibition. In addition, acetyl-CoA:ACP transacylase activity in strain CDM5 was resistant to inactivation by thiolactomycin suggesting that the acetoacetyl-ACP synthase also catalyzes this transacylation reaction. These data point to acetoacetyl-ACP synthase as a target for thiolactomycin inhibition of bacterial fatty acid biosynthesis.  相似文献   
4.
The genes encoding two subunits of acetyl coenzyme A carboxylase, biotin carboxyl carrier protein, and biotin carboxylase have been cloned from Bacillus subtilis. DNA sequencing and RNA blot hybridization studies indicated that the B. subtilis accB homolog which encodes biotin carboxyl carrier protein, is part of an operon that includes accC, the gene encoding the biotin carboxylase subunit of acetyl coenzyme A carboxylase.  相似文献   
5.
D W Grogan  J E Cronan 《Gene》1983,22(1):75-83
A nonselectable gene carried on a poorly selectable recombinant plasmid has been physically mapped by deletion analysis. Our method involved cloning the plasmid into a coliphage lambda vector and treating the recombinant phage with a chelator. Virtually all particles surviving this treatment carried large deletions within the plasmid insert. Further deletion analysis was done by inserting a selectable lambda sequence into one such deletion derivative and repeating the chelator selection. Chelator selection was also used to isolate deletions constructed in vitro. The deleted phage are readily characterized by restriction mapping, and the gene in question scored after infection of a mutant host strain. These techniques have enabled us to physically assign the cyclopropane fatty acid synthase gene of Escherichia coli to 0.8 kb of a 16-kb segment after characterizing only a small number of isolates. This approach should be generally useful in the mapping of plasmids for which no convenient method exists for selecting or scoring the gene in question.  相似文献   
6.
Escherichia coli exports previously folded and biotinated protein domains   总被引:9,自引:0,他引:9  
Biotination of proteins is a post-translational modification that requires a folded acceptor domain. We previously showed that an acceptor domain fused to the carboxyl terminus of several cytosolic proteins results in biotinated fusion proteins in vivo. We now show that proteins encoded by translational gene fusions of two periplasmic proteins, alkaline phosphatase and TEM beta-lactamase, to carboxyl-terminal biotin-accepting sequences are biotinated and exported by Escherichia coli. Expression of the alkaline phosphatase fusion protein in wild type strains resulted in inefficient biotination of the fusion product. This result was due to the rapid export of the acceptor protein before biotination could occur since a very large increase in biotinated fusion protein levels was observed in strains lacking the SecB chaperone protein. The beta-lactamase fusion protein was biotinated but was only stable in strains lacking the DegP periplasmic protease. Both biotinated fusion proteins accumulated in the culture medium in strains possessing defective outer membranes. These results indicate that the export machinery can accommodate both a post-translational modification and a protein domain previously folded into its mature conformation in vivo.  相似文献   
7.
We report a simple in vivo technique for introducing an antibiotic resistance marker into phage lambda. This technique could be used for direct selection of lysogens harboring recombinant phages from the Kohara lambda bank (a collection of ordered lambda clones carrying Escherichia coli DNA segments). The two-step method uses homologous recombination and lambda DNA packaging to replace the nonessential lambda DNA lying between the lysis genes and the right cohesive (cos) end with the neomycin phosphotransferase (npt) gene from Tn903. This occurs during lytic growth of the phage on a plasmid-containing host strain. Neomycin-resistant (npt+) recombinant phages are then selected from the lysates containing the progeny phage by transduction of a polA1 lambda lysogenic host strain to neomycin resistance. We have tested this method with two different Kohara lambda phage clones; in both cases, neomycin resistance cotransduced with the auxotrophic marker carried by the lambda clone, indicating complete genetic linkage. Linkage was verified by restriction mapping of purified DNA from a recombinant phage clone. We also demonstrate that insertion of the npt+ recombinant phages into the lambda prophage can be readily distinguished from insertion into bacterial chromosomal sequences.  相似文献   
8.
9.
We report characterization of the component proteins and molecular cloning of the genes encoding the two subunits of the carboxyltransferase component of the Escherichia coli acetyl-CoA carboxylase. Peptide mapping of the purified enzyme component indicates that the carboxyltransferase component is a complex of two nonidentical subunits, a 35-kDa alpha subunit and a 33-kDa beta subunit. The alpha subunit gene encodes a protein of 319 residues and is located immediately downstream of the polC gene (min 4.3 of the E. coli genetic map). The deduced amino acid composition, molecular mass, and amino acid sequence match those determined for the purified alpha subunit. Six sequenced internal peptides also match the deduced sequence. The amino-terminal sequence of the beta subunit was found within a previously identified open reading frame of unknown function called dedB and usg (min 50 of the E. coli genetic map) which encodes a protein of 304 residues. Comparative peptide mapping also indicates that the dedB/usg gene encodes the beta subunit. Moreover, the deduced molecular mass and amino acid composition of the dedB/usg-encoded protein closely match those determined for the beta subunit. The deduced amino acid sequences of alpha and beta subunits show marked sequence similarities to the COOH-terminal half and the NH2-terminal halves, respectively, of the rat propionyl-CoA carboxylase, a biotin-dependent carboxylase that catalyzes a similar carboxyltransferase reaction reaction. Several conserved regions which may function as CoA-binding sites are noted.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号