首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2016年   1篇
  2013年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The olive tree ( Olea europaea L.) is commonly grown in the Mediterranean basin and is able to resist severe and prolonged drought. Levels of proline (PRO) and malondialdehyde (MDA), and the lipoxygenase (LOX) activity were determined in 2-year-old olive plants (cv. 'Coratina') grown in environmental conditions characterized by high temperatures and high photosynthetic photon flux density levels and gradually subjected to a controlled water deficit for 20 days. Before and during the experimental period, leaf and root samples were collected and analysed for PRO and MDA. The levels of PRO increased in parallel with the severity of drought stress in both leaves and roots. Significant increases of LOX activity and MDA content were also observed during the progressive increment of drought stress in both leaf and root tissues. Measurements of transpiration and photosynthetic rate, stomatal conductance and substomatal CO2 concentration were carried out during the experiment. The accumulation of PRO indicates a possible role of PRO in drought tolerance. The increases of MDA content and LOX activity show that the water deficit is associated with lipid peroxidation mechanisms.  相似文献   
2.
The effects of water stress on water potential components, tissue water content, mean elastic modulus and the osmoregulation capacity of olive (Olea europaea L. cv. Coratina) leaves was determined. Artificial rehydration of olive leaf tissues altered the P-V relationships so that a plateau phenomenon occurred. Points in the P-V curve in the region affected by the plateau, generally up to –0.5 MPa, were corrected for all the samples analyzed. In the corrected P-V relationship, an osmotic adjustment was found in drought-stressed leaf tissues. Osmotic potentials at full turgor (0 (sat)) and osmotic potential at turgor-loss (0 (TVT)) decreased from –2.06±0.01 MPa and –3.07±0.16 MPa in controls to –2.81±0.03 MPa and –3.85±0.12 MPa in most stressed plants. Osmotic adjustment values obtained from the P-V curves agreed with those obtained using an osmometer. An active osmotic adjustment of 1.42 MPa was also observed in 1–4 mm- diameter roots. Mannitol is the main carbohydrate involved in osmotic potential decrease in all treatments. The maximum elastic modulus increased from 11.6±0.95 MPa in the controls to 18.6±0.61 MPa in the most stressed plants.  相似文献   
3.

Purpose

The estimations of greenhouse gas (GHG) field emissions from fertilization and soil carbon changes are challenges associated with calculating the carbon footprint (CFP) of agricultural products. At the regional level, the IPCC Guidelines for National Greenhouse Gas Inventories (2006a) Tier 1 approach, based on default emission factors, insufficiently accounts for emission variability resulting from pedo-climatic conditions or management practices. However, Tier 2 and 3 approaches are usually considered too complex to be practicable. In this paper, we discuss different readily available medium-effort methods to improve the accuracy of GHG emission estimates.

Methods

We present four case studies—two wheat crops in Germany and two peach orchards in Italy—to test the performance of Tier 1, 2, and 3 methodologies and compare the estimated results with available field measurements. The methodologies selected at Tier 2 and Tier 3 level are characterized by simple implementation and data collection, for which only a medium level of effort for stakeholders is required. The Tier 2 method consists of calculating direct and indirect N2O, emissions from fertilization with a multivariate empirical model which accounts for pedo-climatic and crop management conditions. The Tier 3 method entails simulation of soil carbon stock change using the Rothamsted carbon model.

Results and discussion

Relevant differences were found among the tested methodologies: in all case studies, the Tier 1 approach exceeded the Tier 2 estimations for fertilizer-induced emissions (up to +50 %) and the measurements. Using this higher Tier approach reduced the estimated CFP calculation of annual crops by 4 and 21 % and that of the perennial crop by 7 %. Removals related to positive soil carbon change calculated using the Tier 1 approach also exceeded the Tier 3 calculations for the studied annual crops (up to +90 %) but considerably underrated the Tier 3 estimations and measurements for perennial crops (?75 %). In this case, the impact of the selected Tier method on the final CFP results was even more relevant: an increase of 194 and 88 % for the studied annual crops and a decrease of 67 % for the perennial crop case study.

Conclusions

The use of higher Tiers for the estimation of land-based emissions is strongly recommended to improve the accuracy of the CFP results. The suggested medium-effort methods tested in this study represent a good compromise between complexity reduction and accuracy improvement and can be considered reliable for the assessment of GHG mitigation potentials.
  相似文献   
4.

Background and Aims

Xylem flows into most fruits decline as the fruit develop, with important effects on mineral and carbohydrate accumulation. It has been hypothesized that an increase in xylem hydraulic resistance (RT) contributes to this process. This study examined changes in RT that occur during development of the berry of kiwifruit (Actinidia deliciosa), identified the region within the fruit where changes were occurring, and tested whether a decrease in irradiance during fruit development caused an increase in RT, potentially contributing to decreased mineral accumulation in shaded fruit.

Methods

RT was measured using pressure chamber and flow meter methods, the two methods were compared, and the flow meter was also used to partition RT between the pedicel, receptacle and proximal and distal portions of the berry. Dye was used as a tracer for xylem function. Artificial shading was used to test the effect of light on RT, dye entry and mineral accumulation.

Key Results

RT decreased during the early phase of rapid fruit growth, but increased again as the fruit transitioned to a final period of slower growth. The most significant changes in resistance occurred in the receptacle, which initially contributed 20 % to RT, increasing to 90 % later in development. Dye also ceased moving beyond the receptacle from 70 d after anthesis. The two methods for measuring RT agreed in terms of the direction and timing of developmental changes in RT, but pressure chamber measurements were consistently higher than flow meter estimates of RT, prompting questions regarding which method is most appropriate for measuring fruit RT. Shading had no effect on berry growth but increased RT and decreased dye movement and calcium concentration.

Conclusions

Increased RT in the receptacle zone coincides with slowing fresh weight growth, reduced transpiration and rapid starch accumulation by the fruit. Developmental changes in RT may be connected to changes in phloem functioning and the maintenance of water potential gradients between the stem and the fruit. The effect of shade on RT extends earlier reports that shading can affect fruit vascular differentiation, xylem flows and mineral accumulation independently of effects on transpiration.  相似文献   
5.
A field study and an experiment under controlled conditions using pressure-flux relationships were conducted to compare the stem and whole-plant conductance in olive (Olea europaea) and kiwifruit (Actinidia deliciosa) species. Anatomical observations were also made on one-year-old stem to determine the conductive area of vessels (A ves) and the total xylem area (A xyl). Results show that A ves of kiwifruit twigs was ~2.5-fold of that in olive twigs, and the hydraulically weighted mean diameter was up to threefold that of the olive ones. One-year-old olive twigs had lower hydraulic conductivity (k) than the kiwifruit, while values of leaf-specific conductivity (i.e. k normalised per unit leaf area) were higher than the kiwifruit (i.e. ~49 and 29 × 10?6 kg m?1 s?1 MPa?1, respectively). In the field experiment, the flux of sap (heat balance method) and differences in water potential through the soil–plant system (ΔP) were used for both species to calculate the whole-plant conductance that was normalised per unit leaf area (leaf-specific whole-plant conductance, K plant,LA). Values of K plant,LA are attributable to the combined effect of the ΔP and anatomical features of conduits. Olive species showed a larger ΔP (2.4 MPa at midday) than the kiwifruit (0.5 MPa) which contributed to lower K plant,LA in Olea than the Actinidia plants. This information, combined with vessel density data, contributes to explain differences amidst olive and kiwifruit species, in terms of susceptibility to some drought-related hydraulic impairments induced by the Mediterranean environment.  相似文献   
6.
Two-year-old olive trees (Olea europaea L., cv. Coratina) were subjected to a 15-day period of water deficit, followed by 12 days of rewatering. Water deficit caused decreases in predawn leaf water potential (Ψw), relative water content and osmotic potential at full turgor (Ψ π100) of leaves and roots, which were normally restored upon the subsequent rewatering. Extracts of leaves and roots of well-watered olive plants revealed that the most predominant sugars are mannitol and glucose, which account for more than 80% of non-structural carbohydrates and polyols. A marked increase in mannitol content occurred in tissues of water-stressed plants. During water deficit, the levels of glucose, sucrose and stachyose decreased in thin roots (with a diameter <1 mm), whereas medium roots (diameter of 1–5 mm) exhibited no differences. Inorganic cations largely contribute to Ψ π100 and remained stable during the period of water deficit, except for the level of Ca2+, which increased of 25% in water-stressed plants. The amount of malate increased in both leaves and roots during the dry period, whereas citrate and oxalate decreased. Thin roots seem to be more sensitive to water deficit and its consequent effects, while medium roots present more reactivity and a higher osmotic adjustment. The results support the hypothesis that the observed decreases in Ψw and active osmotic adjustment in leaves and roots of water-stressed olive plants may be physiological responses to tolerate water deficit.  相似文献   
7.
Plasma C-reactive protein (CRP) concentration is a biomarker of systemic atherosclerosis and may also be associated with vein graft disease. It remains unclear whether CRP is also an important modulator of biological events in the vessel wall. We hypothesized that CRP influences vein graft healing by stimulating smooth muscle cells (SMCs) to undergo a phenotypic switch. Distribution of CRP was examined by immunohistochemistry in prebypass human saphenous veins (HSVs, n = 21) and failing vein grafts (n = 18, 25-4,400 days postoperatively). Quiescent HSV SMCs were stimulated with human CRP (5-50 microg/ml). SMC migration was assessed in modified Boyden chambers with platelet-derived growth factor (PDGF)-BB (5-10 ng/ml) as the chemoattractant. SMC viability and proliferation were assessed by trypan blue exclusion and reduction of Alamar Blue substrate, respectively. Expression of PDGF ligand and receptor (PDGFR) genes was examined at RNA and protein levels after 24-72 h of CRP exposure. CRP staining was present in 13 of 18 diseased vein grafts, where it localized to the deep media and adventitia, but it was minimally detectable in most prebypass veins. SMCs pretreated with CRP demonstrated a dose-dependent increase in migration to PDGF-BB (P = 0.02), which was inhibited by a PDGF-neutralizing antibody. SMCs treated with CRP showed a dose-dependent increase in PDGFRbeta expression and phosphorylation after 24-48 h. Exogenous CRP had no effect on SMC viability or proliferation. These data suggest that CRP is detectable within the wall of most diseased vein grafts, where it may exert local effects. Clinically relevant levels of CRP can stimulate SMC migration by a mechanism that may involve upregulation and activation of PDGFRbeta.  相似文献   
8.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   
9.
Luminal shearing forces have been shown to impact both geometric remodeling and the development of intimal hyperplasia. Less well studied is the influence of intramural wall stresses on vessel growth and adaptation. Using a vein graft-fistula configuration to isolate the impact of circumferential wall stress, we identify the reorganization of adventitial myofibroblasts as the dominant histological event that limits early outward remodeling of vein grafts in response to elevated wall stress. We hypothesize that increased production of transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF) induces recruitment of myofibroblasts, promotes adventitial reorganization, and limits early outward remodeling in response to increased intramural wall stress. Vein grafts with a distal arteriovenous fistula in the neck of rabbits were constructed, resulting in a fourfold differential in circumferential wall stress. Using this model, we demonstrate 1) elevated wall stress augments the production of TGF-beta and CTGF, 2) increased TGF-beta expression and CTGF expression are correlated with the enhanced differentiation from fibroblasts to myofibroblasts, as evidenced by the significant increase in the alpha-actin-positive cells in adventitia, and 3) the levels of TGF-beta, CTGF, and alpha-actin are inversely correlated with the magnitude of outward remodeling of the graft wall. Increased wall stress after vein graft implantation appears to induce a TGF-beta- and CTGF-mediated recruitment of adventitial fibroblasts and a conversion to a myofibroblast phenotype. Although important in the maintenance of wall stability in the face of an increased mechanical load, this adventitial adaptation limits early outward remodeling of the vein conduit and may prove deleterious in maintaining long-term vein graft patency.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号