首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
Hydrocortisone is a modulator of cell division and has been shown to prolong the replicative in vitro life span of human embryonic lung fibroblasts. Time lapse cinematography was used to analyze the proliferative behavior of individual cells in populations of fibroblasts exposed to hydrocortisone in young cultures during a single growth cycle and in aged cultures that had been continuously exposed to hydrocortisone. Results indicate that hydrocortisone causes a decrease in the interdivision time (IDT) of a portion of the cells in the population and this effect is augmented after continuous exposure to hydrocortisone. Hydrocortisone does not appear to increase the number of initial dividers in the population but increases growth rate in the early stages of the culture period. Analysis of mother-daughter IDT pairs further suggests that hydrocortisone exerts its effects on IDT independently for a given cell.  相似文献   
2.
Apoptosis--or programmed cell death--is an active type of cell death, occurring in several pathophysiological conditions. One of the most important characteristics of apoptosis is that cell death is preceded by DNA fragmentation, consequent to the activation of nuclear calcium- and magnesium-dependent endonuclease(s). DNA fragmentation can be inhibited by zinc ions. By using several techniques, such as DNA agarose gel electrophoresis, cytofluorimetric analysis of DNA content and of cell cycle, 3H-thymidine incorporation and trypan blue dye exclusion test, we show that zinc, despite completely inhibiting DNA fragmentation and the consequent loss of nuclear DNA content, does not protect rat thymocytes from spontaneous or dexamethasone-induced death. Our data also suggest that DNA fragmentation, although characteristic, is not a critical event for thymocyte death of apoptotic type.  相似文献   
3.
The effects of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on the proliferation, protein kinase C activity (PKC), and c-fos gene expression were examined in cultures of young and senescent (90-95% lifespan completed) WI-38 human diploid fibroblasts. We observed that, following stimulation with medium containing 10% fetal bovine serum (FBS), the translocation of PKC from the cytosol to the particulate compartment was less efficient in senescent WI-38 cells than in young cells. However, when PMA was added to the medium, the intracellular distribution of PKC activity in old cells became nearly identical to that observed in young cells. The inducibility of c-fos mRNA by serum addition, which is a protein kinase C-dependent event [64], was significantly amplified in the presence of PMA. Moreover, the duration of peak c-fos expression, after stimulation by FBS and PMA, increased in senescent cells as compared to young cells. Our results reveal that the normal signal transduction pathway is altered in senescent, slowly proliferating human fibroblasts and that it can be partially restored in the presence of the tumor promoter PMA.  相似文献   
4.
Summary Changes in the size of the area covered by individual cultured WI-38 cells as the cultures age have been studied by using a new microphotographic paper cutout technique. This method is nondestructive and nonintrusive and avoids a number of artifacts which can occur in the measurement of suspended cells. The measurements reveal that the decreased cell yield of late passage cultures-reflects not only the appearance of a subpopulation of larger cells but also the failure of the cells to utilize all the growth surface available to them. This work was supported in part by USPHS research grant AG-00378 and by a fellowship, AG-05019, from the National Institute on Aging.  相似文献   
5.
We have examined the ability of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) to stimulate cultures of young and senescent WI-38 cells to carry out tyrosine-specific phosphorylation of their respective membrane receptors. Previously we reported no reduction in EGF-stimulated phosphorylation in plasma membrane preparations of senescent cells. In this study we found no reduction in PDGF-stimulated phosphorylation in plasma membrane preparations from senescent cells. Furthermore, we found no differences in the EGF- or PDGF-stimulated phosphorylation of their respective receptors in intact cells. These data support the previous findings that although the EGF receptor autokinase activity becomes highly labile during extraction and immunoprecipitation of senescent cells, in situ loss of receptor tyrosine kinase activity is apparently not responsible for the age-associated loss of mitogenic responsiveness.  相似文献   
6.
Cellular senescence is characterized by impaired cell proliferation. We have previously shown that, relative to the young counterpart, senescent WI-38 human fibroblasts display a decreased abundance of active phosphorylated ERK (p-ERK) in the nucleus. We have tested the hypothesis that this is due to elevated levels of nuclear MAP kinase phosphatase (MKP) activity in senescent cells. Our results indicate that the activity and abundance of MKP-2 is increased in senescent fibroblasts, compared to their young counterparts. Further analysis indicates that it is MKP-2 protein, but not MKP-2 mRNA level, that is increased in senescent cells. This increase is the result of the increased stability of MKP-2 protein against proteolytic degradation. The degradation of MKPs was impaired by proteasome inhibitors both in young and old WI-38 cells, indicating that proteasome activity is involved in the degradation of MKPs. Finally, our results indicate that proteasome activity, in general, is diminished in senescent fibroblasts. Taken together, these data indicate that the increased level and activity of MKP-2 in senescent WI-38 cells are the consequence of impaired proteosomal degradation, and this increase is likely to play a significant role in the decreased levels of p-ERK in the nucleus of senescent cells.  相似文献   
7.
Cellular aging is accompanied by alterations in gene expression patterns. Here, using two models of replicative senescence, we describe the influence of the RNA-binding protein HuR in regulating the expression of several genes whose expression decreases during senescence. We demonstrate that HuR levels, HuR binding to target mRNAs encoding proliferative genes, and the half-lives of such mRNAs are lower in senescent cells. Importantly, overexpression of HuR in senescent cells restored a "younger" phenotype, while a reduction in HuR expression accentuated the senescent phenotype. Our studies highlight a critical role for HuR during the process of replicative senescence.  相似文献   
8.
Cytochemically detectable beta-galactosidase (beta-gal) at pH 6.0 has been reported to increase during the replicative senescence of fibroblast cultures and has been used widely as a marker of cellular senescence in vivo and in vitro. In this study, we have characterized changes in senescence-associated (SA) beta-gal staining in early and late passage cultures, cultures established from donors of different ages, virally immortalized cells, and tissue slices obtained from donors of different ages. The effects of different culture conditions were also examined. While we confirm the previous report that SA beta-gal staining increased in low-density cultures of proliferatively senescent cells, we were unable to demonstrate that it is a specific marker for aging in vitro. Cultures established from donors of different ages stained for SA beta-gal activity as a function of in vitro replicative age, not donor age. We also failed to observe any differences in SA beta-gal staining in skin cells in situ as a marker of aging in vivo. The level of cytochemically detectable SA beta-gal was elevated in confluent nontransformed fibroblast cultures, in immortal fibroblast cultures that had reached a high cell density, and in low-density, young, normal cultures oxidatively challenged by treatment with H2O2. Although we clearly demonstrate that SA beta-gal staining in cells is increased under a variety of different conditions, the interpretation of increased staining remains unclear, as does the question of whether the same mechanisms are responsible for the increased SA beta-gal staining observed in senescent cells and changes observed in cells under other conditions.  相似文献   
9.
10.
Normal somatic cells have a limited replicative lifespan, and serial subcultivation ultimately results in senescence. Senescent cells are irreversibly growth-arrested and show impaired responses to mitogens. Activation of the ERK signaling pathway, an absolute requirement for cell proliferation, results in nuclear relocalization of active ERKs, an event impaired in senescent fibroblasts. This impairment coincides with increased activity of the nuclear ERK phosphatase MKP2. Here we show that replicative lifespan can be altered by changes in nuclear ERK activity. Ectopic expression of MKP2 results in premature senescence. In contrast, knock-down of MKP2 expression, through transduction of MKP2 sequence-specific short hairpin RNA, or expression of the phosphatase resistant ERK2(D319N) mutant, abrogates the effects of increased endogenous MKP2 levels and senescence is postponed. Nuclear targeting of ERK2(D319N) significantly augments its effects and the transduced cultures show higher than 60% increase in replicative lifespan compared with cultures transduced with wt ERK2. Long-lived cultures senesce with altered molecular characteristics and retain the ability to express c-fos, and Rb is maintained in its inactive form. Our results support that MKP2-mediated inactivation of nuclear ERK2 represents a key event in the establishment of replicative senescence. Although it is evident that senescence can be imposed through multiple mechanisms, restoration of nuclear ERK activity can bypass a critical senescence checkpoint and, thus, extend replicative lifespan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号