首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   63篇
  760篇
  2023年   8篇
  2022年   4篇
  2021年   14篇
  2020年   9篇
  2019年   17篇
  2018年   20篇
  2017年   14篇
  2016年   24篇
  2015年   35篇
  2014年   50篇
  2013年   41篇
  2012年   58篇
  2011年   39篇
  2010年   30篇
  2009年   20篇
  2008年   41篇
  2007年   50篇
  2006年   35篇
  2005年   26篇
  2004年   39篇
  2003年   39篇
  2002年   30篇
  2001年   12篇
  2000年   19篇
  1999年   10篇
  1998年   10篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   6篇
  1967年   1篇
排序方式: 共有760条查询结果,搜索用时 12 毫秒
1.
The homeobox, a 183 bp DNA sequence element, was originally identified as a region of sequence similarity between many Drosophila homeotic genes. The homeobox codes for a DNA-binding motif known as the homeodomain. Homeobox genes have been found in many animal species, including sea urchins, nematodes, frogs, mice and humans. To isolate homeobox-containing sequences from the plant Arabidopsis thaliana, a cDNA library was screened with a highly degenerate oligonucleotide corresponding to a conserved eight amino acid sequence from the helix-3 region of the homeodomain. Using this strategy two cDNA clones sharing homeobox-related sequences were identified. Interestingly, both of the cDNAs also contain a second element that potentially codes for a leucine zipper motif which is located immediately 3'' to the homeobox. The close proximity of these two domains suggests that the homeodomain-leucine zipper motif could, via dimerization of the leucine zippers, recognize dyad-symmetrical DNA sequences.  相似文献   
2.
3.
After lentectomy of larval Xenopus laevis , the outer cornea undergoes tissue transformation resulting in formation of a new lens. This lens regeneration is triggered and sustained by neural retina. In the present study, lens-forming transformation of the outer cornea was completed in vitro when the outer cornea was cultured within the lentectomized eye-cup. Well-differentiated lens fiber cells, which showed positive immunofluorescence for total crystallins, were also formed when the outer cornea was cultivated with the retina. No lens tissue was formed when the cornea was cultured alone. Lens-forming transformation, originating from the cornea three and five days after lentectomy, completely regressed when the tissue was isolated in vitro . Fom the present and previous findings, we concluded that, the interaction of corneal cells with the retina plays a decisive role in lens regeneration in situ .  相似文献   
4.
Tissue cultures of Nicotiana tabacum were utilized to investigate the mechanisms associated with host specificity and non-host incompatibility in mycorrhizal and pathogenic fungi. They were tested for expression of resistance to different species of mycorrhizal fungi and to a fungal pathogen of tobacco, Thielaviopsis basicola , by monitoring the production of callose, phenolic compounds and peroxidases in dual cultures. Tobacco cells reacted to the presence of all the mycorrhizal fungi with callose deposits, whereas callose was nearly always absent in tobacco cells inoculated with their pathogen T. basicola. The broad-host range ectomycorrhizal fungi Hebeloma crustuliniforme, Lac-caria laccata and Suilhis granulatus elicited less intense responses than did Hymenoscyphus ericae. The results obtained for phenolic production and peroxidase activity were consistently similar to those obtained for callose deposition. They showed that H. ericae , an endomycorrhizal symbiont of Ericaceae, was highly incompatible with tobacco cells and that the tobacco pathogen T. basicola did not elicit strong reactions in the cells of its host. In this paper, the possibility of utilizing callus cultures as a simple model system to study both the different degrees of compatibility and the early events of recognition between mycorrhizal fungi and their host or non-host plants is discussed.  相似文献   
5.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.  相似文献   
6.
We detected, for the first time, the occurrence of vegetative incompatibility between different isolates of the arbuscular mycorrhizal fungal species Glomus mosseae. Vegetative compatibility tests performed on germlings belonging to the same isolate showed that six geographically different isolates were capable of self-anastomosing, and that the percentage of hyphal contacts leading to fusions ranged from 60 to 85%. Successful anastomoses were characterized by complete fusion of hyphal walls, protoplasm continuity and occurrence of nuclei in the middle of hyphal bridges. No anastomoses could be detected between hyphae belonging to different isolates, which intersected without any reaction in 49 to 68% of contacts. Microscopic examinations detected hyphal incompatibility responses in diverse pairings, consisting of protoplasm retraction from the tips and septum formation in the approaching hyphae, even before physical contact with neighboring hyphae. Interestingly, many hyphal tips showed precontact tropism, suggesting that specific recognition signals may be involved during this stage. The intraspecific genetic diversity of G. mosseae revealed by vegetative compatibility tests was confirmed by total protein profiles and internal transcribed spacer-restriction fragment length polymorphism profiles, which evidenced a higher level of molecular diversity between the two European isolates IMA1 and BEG25 than between IMA1 and the two American isolates. Since arbuscular mycorrhizal fungi lack a tractable genetic system, vegetative compatibility tests may represent an easy assay for the detection of genetically different mycelia and an additional powerful tool for investigating the population structure and genetics of these obligate symbionts.  相似文献   
7.
Endothelium-derived relaxing factor (EDRF), identified as nitric oxide (NO), is derived from a guanidino nitrogen of L-arginine via its metabolism by nitric oxide synthase (NOS). Herein, we report the molecular cloning of a cDNA encoding the constitutive calcium-calmodulin (Ca2+/CaM)-regulated nitric oxide synthase (ECNOS). A full-length ECNOS clone was isolated by screening a bovine aortic endothelial cell cDNA library using a fragment of rat brain NOS (bNOS) cDNA. This cDNA has an open reading frame of 3615 nucleotides encoding a 1205-amino acid protein. Membranes prepared from COS cells transfected with the ECNOS cDNA demonstrated NADPH- and Ca2+/CaM- dependent conversion of L-, but not D-, arginine to NO and citrulline that was inhibited by NG-nitro-L-arginine methyl ester. Comparison of the deduced amino acid sequence of ECNOS to the bNOS and macrophage NOS (Mac-NOS) sequences revealed 57 and 50% identity, respectively. In addition, ECNOS contains a unique N-myristylation consensus sequence (not shared by bNOS or Mac-NOS) that may explain its membrane localization.  相似文献   
8.
The role of the protein kinase Akt in cell migration is incompletely understood. Here we show that sphingosine-1-phosphate (S1P)-induced endothelial cell migration requires the Akt-mediated phosphorylation of the G protein-coupled receptor (GPCR) EDG-1. Activated Akt binds to EDG-1 and phosphorylates the third intracellular loop at the T(236) residue. Transactivation of EDG-1 by Akt is not required for G(i)-dependent signaling but is indispensable for Rac activation, cortical actin assembly, and chemotaxis. Indeed, T236AEDG-1 mutant sequestered Akt and acted as a dominant-negative GPCR to inhibit S1P-induced Rac activation, chemotaxis, and angiogenesis. Transactivation of GPCRs by Akt may constitute a specificity switch to integrate rapid G protein-dependent signals into long-term cellular phenomena such as cell migration.  相似文献   
9.
A wealth of evidence supports the broad therapeutic potential of NF‐κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF‐κB and the NF‐κB interacting long non‐coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non‐canonical actions of EZH2 on the regulation of NF‐κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non‐transformed breast epithelial cells, triple negative MDA‐MB‐231 cells and hormone responsive MCF‐7 cells, and measured changes in EZH2/NF‐κB/NKILA levels to confirm their interdependence. We demonstrate cell line‐specific fluctuations in these factors that functionally contribute to epithelial‐to‐mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA‐MB‐231 cell motility and CDK4‐mediated MCF‐7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non‐transformed cells. Notably, these events are mediated by a cell‐context dependent gain or loss of NKILA and NF‐κB. Depletion of NF‐κB in non‐transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF‐κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.  相似文献   
10.
When protein synthesis is arrested by amino acid starvation, Escherichia coli wild-type strains show stringent control (SC) over stable RNA (sRNA) accumulation as well as a large number of other growth-related processes. One of the events under SC is transport of metabolites. Thus, under amino acid starvation, E. coli fails to accumulate the non-metabolizable glucose analog alpha-methyl-D-glucoside, whereas isogenic relaxed strains continue to take up this glucose analog. Unlike the Bacteria, most wild-type archaeal strains show relaxed control of sRNA accumulation, although a number of stringent strains have been identified. In order to determine whether stringency in the Archaea affects physiological events different from sRNA accumulation, transport of glucose analogs was examined under amino acid starvation in two stringent archaeal strains, Haloferax volcanii and Sulfolobus acidocaldarius. The experiments were performed with 2-deoxy-D-glucose, which was shown to be transported, but metabolized very limitedly. Unlike E. coli, H. volcanii and S. acidocaldarius continued to transport 2-deoxy-D-glucose under amino acid starvation. Thus, in both Archaea glucose analog transport is not under SC, as it is in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号