首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   6篇
  221篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   12篇
  2013年   13篇
  2012年   18篇
  2011年   21篇
  2010年   13篇
  2009年   21篇
  2008年   17篇
  2007年   11篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1988年   3篇
  1976年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
1.
The N-glylycans have been removed by peptide-N-glycosidase F(PNGase F) from purified human non-secretory RNases derivedfrom kidney, liver and spleen. The spleen RNase was purifiedby two procedures, one of which did not include the usual acidtreatment step (0.25 M H2SO4, 45 min, 4C), to determine ifacid treatment alters the carbohydrate moieties. TheN-glycansof the RNases were fractionated by Bio-Gel P-4 chromatographyand analysed by 600 MHz 1H-NMR spectroscopy and electrospraymass spectrometry. All four non-secretory RNase preparationscontained the following structures: The relative amounts of the trisaccharide, pentasaccharide andhexasaccharide appeared to vary slightly in the different tissueRNases. The overall results indicate: (i) that acid treatmentduring purification does not alter the N-glycans of non-secretoryRNases; (ii) that the N-glycans from kidney, liver and spleennon-secretory RNases are very similar, if not identical, toone another, but different from the N-glycan structures reportedfor secretory RNase. N-glycans non-secretory RNases  相似文献   
2.
The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5 ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.  相似文献   
3.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   
4.
Differential scanning calorimetry was used to examine the effects of cofilin on the thermal unfolding of actin. Stoichiometric binding increases the thermal stability of both G- and F-actin but at sub-saturating concentrations cofilin destabilizes F-actin. At actin:cofilin molar ratios of 1.5-6 the peaks corresponding to stabilized (66-67 degrees C) and destabilized (56-57 degrees C) F-actin are observed simultaneously in the same thermogram. Destabilizing effects of sub-saturating cofilin are highly cooperative and are observed at actin:cofilin molar ratios as low as 100:1. These effects are abolished by the addition of phalloidin or aluminum fluoride. Conversely, at saturating concentrations, cofilin prevents the stabilizing effects of phalloidin and aluminum fluoride on the F-actin thermal unfolding. These results suggest that cofilin stabilizes those actin subunits to which it directly binds, but destabilizes F-actin with a high cooperativity in neighboring cofilin-free regions.  相似文献   
5.
Spermadhesins are a family of secretory proteins expressed in the male genital tract of pig, horse and bull. Their function and structure have been widely studied, especially those isolated from boar. However, there are no data concerning spermadhesins isolated from buck. Buck seminal plasma was collected and subjected to ion exchange chromatography on DEAE-Sephacel column followed by chromatography in a C18 column coupled to a HPLC system. The purification of the protein was determined by SDS-PAGE and MALDI-TOF analysis exhibiting a molecular mass of 12.5 KDa and showed to be structurally homologous to spermadhesins from boar and stallion.  相似文献   
6.
Double muscling is a partially recessive trait present in some beef breeds. It shows a high frequency in some breeds, while in others the frequency is low, and double-muscled individuals are rare. The double muscling is caused by an allelic series of mutations that cause a loss of function of the myostatin gene ( GDF8). We describe here a new mutation in the myostatin gene in Marchigiana breed, a typical beef breed of Central Italy, in which rare double-muscling individuals have been described. A PCR product of the third exon was sequenced in subjects phenotypically showing double muscling, and a G > T transversion was discovered that introduces a premature stop codon. The variant found adds to the large series of mutations present in cattle, and particularly to the only two causative of double muscling in the third exon. A PCR-RFLP test is described for the rapid and effective identification of both heterozygous and homozygous subjects. It was applied to a larger survey carried on the same and also in two other beef breeds, Chianina and Romagnola. Further individuals carrying the new variant were found in Marchigiana, but none in the other breeds. The results may be important for a better comprehension of the role of myostatin in muscular development, for commercial use and for the inference of phylogeny of this gene.  相似文献   
7.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   
8.

Background

The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic β-cell death. This study examines the synergistic effects of glucose and FFA on β-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined.

Principal Findings

Increasing glucose (5–25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3β (Gsk3β) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3β.

Conclusions/Significance

Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3β activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet β-cell Gsk3β as a potential therapeutic target.  相似文献   
9.
Efficient cellulolytic enzymes are needed to degrade recalcitrant plant biomass during ethanol purification and make lignocellulosic biofuels a cost-effective alternative to fossil fuels. Despite the large number of insect species that feed on lignocellulosic material, limited availability of quantitative studies comparing cellulase activity among insect taxa constrains identification of candidate species for more targeted identification of effective cellulolytic systems. We describe quantitative determinations of the cellulolytic activity in gut or head-derived fluids from 68 phytophagous or xylophagous insect species belonging to eight different taxonomic orders. Enzymatic activity was determined for two different substrates, carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), approximating endo-β-1,4-glucanase and complete cellulolytic activity, respectively. Highest CMC gut fluid activities were found in Dictyoptera, Coleoptera, Isoptera, and Orthoptera, while highest MCC gut fluid activities were found in Coleoptera, Hymenoptera, Lepidoptera, and Orthoptera. In most cases, gut fluid activities were greater with CMC compared to MCC substrate, except in Diptera, Hymenoptera, and Lepidoptera. In contrast, cellulolytic activity levels in most head fluids were greater on the MCC substrate. Our data suggests that a phylogenetic relationship may exist for the origin of cellulolytic enzymes in insects, and that cellulase activity levels correlate with taxonomic classification, probably reflecting differences in plant host or feeding strategies.  相似文献   
10.
Consumer complaints against the blandness of modern lean meat and the frequent reference to the more strongly flavored meat that was available years ago have prompted reconsideration of high fat-depositing typical pig breeds. Casertana and Large White pig breeds are characterized by a different tendency toward fat accumulation as they exhibit opposite genetic and physiological traits with respect to the energy metabolism. These physiological differences were investigated in longissimus lumborum muscles through proteomics (2-DE, MS/MS) and microarray approaches. Data were analyzed for pathway and network analyses, as well as GO term enrichment of biological functions. As a result, Casertana showed a greater amount of proteins involved in glycolitic metabolism and mainly rely on fast-mobilizable energy sources. Large White overexpressed cell cycle and skeletal muscle growth related genes. Metabolic behavior and other implications are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号