首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   19篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   7篇
  2013年   2篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1989年   4篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有158条查询结果,搜索用时 46 毫秒
1.
The in vitro activity of several new imidazoles, cloconazole, sulconazole, butoconazole, isoconazole and fenticonazole, were compared with those of amphothericin B, flucytosine, and three azoles: econazole, miconazole and ketoconazole against isolates of pathogenic Candida. A total of 186 clinical isolates of 10 species of the genus Candida and two culture collection strains were tested by an agar-dilution technique. Isoconazole was the most active azole, followed by butoconazole and sulconazole. Differences between some of the species in their susceptibility to the antifungal agents were noted. Sulconazole and cloconazole had the highest activity in vitro against 106 isolates of C. albicans. Butoconazole and isoconazole were also very active against isolates of C. albicans, and were the most active azole compounds against 80 isolates of Candida spp.  相似文献   
2.
Differential scanning microcalorimetry of the nuclei of dividing CHO cells revealed DNA structures that showed structural transitions at 60, 76, 88, and 105 degrees C (transitions I to IV, respectively). In cultures synchronized by isoleucine deprivation the enthalpies of transitions I and II were rather constant throughout the cell cycle. While the sum of the enthalpies of III and IV was nearly constant, the ratio of IV to III varied substantially from one phase of the cycle to another. A high IV:III ratio of 6 characterized G1 while S phase gave a IV:III ratio of about 2. Cells containing metaphase chromosomes also showed a IV:III ratio near 2. The IV:III ratio for CHO cells showed a progressive decrease as the cells were maintained in isoleucine-free medium from 0 to 6 days.  相似文献   
3.
A novel experimental method was developed which allows the determination of the threshold concentration of sucrose by use of a linear sucrose gradient in water. With this method a continuous tasting of the test-liquid is possible. A panel of 15 persons experienced in taste-testing was used. Three gradients of different steepness were applied: 0 to 1.5% (w/w) sucrose in 2 min (I), 3 min (II) and 4 min (III). The results of the new method were compared with those of the standard method (DIN). With gradients I and II we found values which were significantly higher than those of the standard method (I: 0.49% (w/w); II: 0.46% (w/w); DIN: 0.31% (w/w)), whereas with gradient III the same threshold value was found as with the DIN-Method (III: 0.32% (w/w)).  相似文献   
4.
Conclusion Scientists and historians have often presumed that the divide between biochemistry and molecular biology is fundamentally epistemological.100 The historiography of molecular biology as promulgated by Max Delbrück's phage disciples similarly emphasizes inherent differences between the archaic tradition of biochemistry and the approach of phage geneticists, the ur molecular biologists. A historical analysis of the development of both disciplines at Berkeley mitigates against accepting predestined differences, and underscores the similarities between the postwar development of biochemistry and the emergence of molecular biology as a university discipline. Stanley's image of postwar biochemistry, with its focus on viruses as key experimental systems, and its preference for following macromolecular structure over metabolism pathways, traced the outline of molecular biology in 1950.Changes in the postwar political economy of research universities enabled the proliferation of disciplines such as microbiology, biochemistry, biophysics, immunology, and molecular biology in universities rather than in medical schools and agricultural colleges. These disciplines were predominantly concerned with investigating life at the subcellular level-research that during the 1930s had often entailed collaboration with physicists and chemists. The interdisciplinary efforts of the 1930s (many fostered by the Rockefeller Foundation) yielded a host of new tools and reagents that were standardized and mass-produced for laboratories after World War II. This commercial infrastructure enabled basic researchers in biochemistry and molecular biology in the 1950s and 1960s to become more independent from physics and chemistry (although they were practicing a physicochemical biology), as well as from the agricultural and medical schools that had previously housed or sponsored such research. In turn, the disciplines increasingly required their practitioners to have specialized graduate training, rather than admitting interlopers from the physical sciences.These general transitions toward greater autonomy for biochemistry and allied disciplines should not mask the important particularities of these developments on each campus. At the University of Caliornia at Berkeley, agriculture had provided, with medicine, significant sponsorship for biochemistry. The proximity of Lawrence and his cyclotrons supported the early development of Berkeley as a center for the biological uses of radioisotopes, particularly in studies of metabolism and photosynthesis. Stanley arrived to establish his department and virus institute before large-scale federal funding of biomedical research was in place, and he courted the state of California for substantial backing by promising both national prominence in the life sciences and virus research pertinent to agriculture and public health. Stanley's venture benefited significantly from the expansion of California's economy after World War II, and his mobilization against viral diseases resonated with the concerns of the Cold War, which fueled the state's rapid growth. The scientific prominence of contemporary developments at Caltech and Stanford invites the historical examination of the significance of postwar biochemistry and molecular biology within the political and cultural economy of the Golden State.In 1950, Stanley presented a persuasive picture of the power of biochemistry to refurbish life science at Berkeley while answering fundamental questions about life and infection. In the words of one Rockefeller Foundation officer,There seems little doubt in [my] mind that as a personality Stanley will be well able to dominate the other personalities on the Berkeley campus and will be able to drive his dream through to completion, which, incidentally, leaves Dr. Hubert [sic] Evans and the whole ineffective Life Sciences building in the somewhat peculiar position of being by-passed by much of the truly modern biochemistry and biophysics research that will be carried out at Berkeley. Furthermore, it seems likely that Dr. S's show will throw Dr. John Lawrence's Biophysics Department strongly in the shade both figuratively and literally, but should make the University of California pre-eminent not only in physics but in biochemistry as well.101 Stanley, Sproul, Weaver, and this officer (William Loomis) all testified to a perceptible postwar opportunity to capitalize on public support for biological research that relied on the technologies from physics and chemistry without being captive to them, and that addressed issues of medicine and agriculture without being institutionally subservient. What is striking, given the expectation by many that Stanley would be able to drive his dream through to completion, was that in fact he did not. Biochemists who had succeeded in making their expertise valued in specialized niches were resistant to giving up their affiliations to joint Stanley's liberated organization. Stanley's failure was not simply due to institutional factors: researchers as well as Rockefeller Foundation officers faulted him for his lack of scientific imagination, which made it difficult for him to gain credibility in leading the field. Moreover, many biochemists did not share Stanley's commitment to viruses as the key material for the new biochemistry.In the end, Stanley's free-standing department did become a first-rate department of biochemistry, but only after freeing itself from Stanley's leadership and his single-minded devotion to viruses. Nonetheless, the falling-out with the Berkeley biochemists was rapidly followed by the establishment of a Department of Molecular Biology, attesting to the unabating economic and institutional possibilities for an authoritative general biology (or two, for that matter) to take hold. In each case, following Stanley's dream sheds light on how the possible and the real shaped the (re)formation of biochemistry and molecular biology as postwar life sciences.  相似文献   
5.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
7.
8.
应用GLC/MS联用仪对室内培养的钝顶螺旋藻(Spirulina platensis (Nordstedt) Geitler)、极大螺旋藻(S.maxima (Stechell & Gardiner) Geitler)和盐泽螺旋藻(S.subsalsa Oerst)的甾醇成分进行了测定。从钝顶螺旋藻和盐泽螺旋藻中共分出11个相同的甾醇组分:胆甾醇、胆甾烷醇、芸苔甾醇、麦角甾醇、海绵甾醇、菜子甾醇、豆甾醇、24-乙基-Δ~(5,7,22)-胆甾醇、β-谷甾醇、异岩藻甾醇和4α,23,24-三甲基Δ~(5,22)-胆甾醇;从极大螺旋藻中只分离出8个甾醇组分。其中胆甾醇含量最高。4α,23,24-三甲基-Δ~(5,22)-胆甾醇为蓝藻中首次报导。  相似文献   
9.
10.
A study was performed to investigate the effect of weaning at 4 weeks of age on the activity of digestive enzymes in the stomach and pancreatic tissue and in digesta from 3 days prior to weaning to 9 days postweaning in 64 piglets. In stomach tissue the activity of pepsin and gastric lipase was determined. Pepsin activity declined abruptly after weaning but 5 days postweaning the weaning level was regained and in the gastric contents no change in pepsin activity was observed. Weaning did not influence the activity of gastric lipase. The activity of eight enzymes and a cofactor was measured in pancreatic tissue. The effect of weaning on the enzyme activity was highly significant for all enzymes except elastase. The activity of all enzymes remained at the weaning level during day 1–2 postweaning followed by a reduction of the activity. The activity of trypsin, carboxypeptidase A, amylase and lipase exhibited minimum activity 5 days postweaning. Trypsin activity increased to the preweaning level on day 7–9 whereas the activity of the others increased but did not reach the preweaning level. The activity of chymotrypsin, carboxypeptidase B and carboxyl ester hydrolase decreased during the entire experimental period. In digesta no effect of weaning was observed on the activity of amylase and trypsin. The activity of chymotrypsin was reduced after weaning in the proximal third of the small intestine and lipase and carboxyl ester hydrolase activity was reduced in the middle and distal parts of the small intestine after weaning. The present study shows that the activities of the digestive enzymes in the pancreatic tissue are affected by weaning. Even though the pancreatic secretion cannot be judged from these results they show that the enzymes respond differently to weaning. In general the activity of the digestive enzymes in pancreatic tissue is low on day 5 postweaning which in interaction with other factors may increase the risk of developing postweaning diarrhoea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号