首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   
2.
Amino Acids - Post-translational modifications (PTMs) are known to play a critical role in the regulation of protein functions. Their impact on protein structures and their link to disorder regions...  相似文献   
3.
Abstract

Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives. We analysed molecular dynamics to investigate protein flexibility locally, using classical approaches such as RMSf, solvent accessibility, but also innovative approaches such as local entropy. First, we focussed on classical secondary structures and analysed specifically how β-strand, β–turns, and bends evolve during molecular simulations. We underlined interesting specific bias between β–turns and bends, which are considered as the same category, while their dynamics show differences. Second, we used a structural alphabet that is able to approximate every part of the protein structures conformations, namely protein blocks (PBs) to analyse (i) how each initial local protein conformations evolve during dynamics and (ii) if some exchange can exist among these PBs. Interestingly, the results are largely complex than simple regular/rigid and coil/flexible exchange. Abbreviations Neq number of equivalent

PB Protein Blocks

PDB Protein DataBank

RMSf root mean square fluctuations

Communicated by Ramaswamy H. Sarma  相似文献   
4.
Peptide bonds in protein structures are mainly found in trans conformation with a torsion angle ω close to 180°. Only a very low proportion is observed in cis conformation with ω angle around 0°. Cistrans isomerization leads to local conformation changes which play an important role in many biological processes. In this paper, we reviewed the recent discoveries and research achievements in this field. First, we presented some interesting cases of biological processes in which cistrans isomerization is directly implicated. It is involved in protein folding and various aspect of protein function like dimerization interfaces, autoinhibition control, channel gating, membrane binding. Then we reviewed conservation studies of cis peptide bonds which emphasized evolution constraints in term of sequence and local conformation. Finally we made an overview of the numerous molecular dynamics studies and prediction methodologies already developed to take into account this structural feature in the research area of protein modeling. Many cis peptide bonds have not been recognized as such due to the limited resolution of the data and to the refinement protocol used. Cistrans proline isomerization reactions represents a vast and promising research area that still needs to be further explored for a better understanding of isomerization mechanism and improvement of cis peptide bond predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号