首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   34篇
  国内免费   1篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   13篇
  2013年   23篇
  2012年   18篇
  2011年   14篇
  2010年   6篇
  2009年   9篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1975年   2篇
  1970年   3篇
  1967年   2篇
  1908年   2篇
  1901年   2篇
  1900年   2篇
  1897年   2篇
  1890年   2篇
  1887年   3篇
  1882年   1篇
排序方式: 共有296条查询结果,搜索用时 31 毫秒
1.
2.
Indirect evidence suggests that legumes can adjust rapidly theresistance of their root nodules to O2 diffusion. Here we describeexperiments using O2 specific micro-electrodes and dark fieldmicroscopy to study directly the operation of this diffusionbarrier. The O2 concentration sensed by the electrode decreasedsharply in the region of the inner cortex and was less than1.0 mmol m–3 throughout the infected tissue in nodulesof both pea (Pisum sativum) and french bean (Phaseolus vulgaris).In a number of experiments the ambient O2 concentration wasincreased to 40% while the electrode tip was just inside theinner cortex. In 13 out of 21 cases the O2 concentration atthis position either remained low and unchanged or increasedirreversibly to near ambient values. In the remaining casesthe O2 concentration increased after 1 to 2.5 min and then decreasedto its former value. These results are ascribed to an increasein resistance of the barrier in response to increased O2 fluxinto the nodule. It was shown microscopically that air spacesboth at the boundary between the infected zone and the innercortex, and within the infected zone started to disappear 3min after nodules were exposed to high ambient O2 concentrationsand had disappeared completely after 8 min. These spaces werenot changed by exposure of the nodule for 10 min to either N2or air. Key words: Oxygen, root nodules, air spaces  相似文献   
3.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
4.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   
5.
Sporicidal properties of some halogens   总被引:4,自引:0,他引:4  
  相似文献   
6.
The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.  相似文献   
7.
8.
The isolated vascularly perfused rat intestine exhibits an obligatory need for a protein carrier in order to absorb zinc. Therefore this system is ideal for use as a model to identify the plasma carrier during zinc absorption. Affinity chromatography on Blue Sepharose CL-6B was employed to separate the major serum zinc-binding proteins in the portal effluent of the perfused intestine. It was found that 94% of newly absorbed 65Zn was transported in the portal serum-containing perfusate as an albumin-65Zn complex. The identity of albumin as the plasma carrier was confirmed by polyacrylamide-slab-gel electrophoresis. This evidence suggests that albumin is the plasma protein that is involved in removal of zinc from intestinal-mucosal cells and subsequent transport of the metal in portal blood to the liver.  相似文献   
9.
10.
The conductance of carbon dioxide (CO2) from the substomatal cavities to the initial sites of CO2 fixation (gm) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm, (iii) the technical limitation of estimating gm, which cannot be directly measured, and (iv) how gm responds to long‐ and short‐term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two‐resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three‐dimensional (3‐D) reaction‐diffusion models and 3‐D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm. Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号