首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  30篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Phenolics of five yam (dioscorea) species   总被引:1,自引:0,他引:1  
Cyanidin-3-glucoside, (+)-catechin and the procyanidin dimers ‘B-1’ and ‘B-3’ were identified as phenolic constituents of Dioscorea alata tubers, and strong evidence for the presence of a procyanidin trimer and a tetramer was found. The quantity of (+)-catechin and relative proportions of the procyanidin dimers were determined in 10 cultivars of five of the main edible yam species.  相似文献   
2.
3.

Introduction

Positron Emission Tomography - Computer Tomography (PET-CT) is an interesting imaging technique to visualize Ankylosing Spondylitis (AS) activity using specific PET tracers. Previous studies have shown that the PET tracers [18F]FDG and [11C](R)PK11195 can target inflammation (synovitis) in rheumatoid arthritis (RA) and may therefore be useful in AS. Another interesting tracer for AS is [18F]Fluoride, which targets bone formation. In a pilot setting, the potential of PET-CT in imaging AS activity was tested using different tracers, with Magnetic Resonance Imaging (MRI) and conventional radiographs as reference.

Methods

In a stepwise approach different PET tracers were investigated. First, whole body [18F]FDG and [11C](R)PK11195 PET-CT scans were obtained of ten AS patients fulfilling the modified New York criteria. According to the BASDAI five of these patients had low and five had high disease activity. Secondly, an extra PET-CT scan using [18F]Fluoride was made of two additional AS patients with high disease activity. MRI scans of the total spine and sacroiliac joints were performed, and conventional radiographs of the total spine and sacroiliac joints were available for all patients. Scans and radiographs were visually scored by two observers blinded for clinical data.

Results

No increased [18F]FDG and [11C](R)PK11195 uptake was noticed on PET-CT scans of the first 10 patients. In contrast, MRI demonstrated a total of five bone edema lesions in three out of 10 patients. In the two additional AS patients scanned with [18F]Fluoride PET-CT, [18F]Fluoride depicted 17 regions with increased uptake in both vertebral column and sacroiliac joints. In contrast, [18F]FDG depicted only three lesions, with an uptake of five times lower compared to [18F]Fluoride, and again no [11C](R)PK11195 positive lesions were found. In these two patients, MRI detected nine lesions and six out of nine matched with the anatomical position of [18F]Fluoride uptake. Conventional radiographs showed structural bony changes in 11 out of 17 [18F]Fluoride PET positive lesions.

Conclusions

Our PET-CT data suggest that AS activity is reflected by bone activity (formation) rather than inflammation. The results also show the potential value of PET-CT for imaging AS activity using the bone tracer [18F]Fluoride. In contrast to active RA, inflammation tracers [18F]FDG and [11C](R)PK11195 appeared to be less useful for AS imaging.  相似文献   
4.
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.  相似文献   
5.
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River County, Mississippi, USA, and density, basal area, and percent stocking in Pearl River County using General Land Office surveys and US Forest Service Forest Inventory and Analysis surveys. Historical longleaf ecosystems were about 85% pine, with lesser amounts of broadleaf evergreen and oak species. Densities were about 175 to 180 trees/ha, mean tree diameters were 45 cm, and stocking was around 60% to 65%, which suggested longleaf pines were closed woodlands. Current forests are 38% to 57% pine, primarily loblolly, while longleaf pine is 2% to 8% of composition. Indeed, current longleaf pine composition across the Coastal Plain averages 3% and does not reach 10% at smaller landscape scales. Fire-sensitive broadleaf species of water oak, sweetgum, yellow-poplar, and red maple increased from about 0.5% composition to 2% to 10% of composition. Forests became twice as dense, at about 280 trees/ha to 330 trees/ha, with mean tree diameters of 22 cm. These results characterize conversion from open old growth longleaf forests, resulting in part from human maintenance, to successional forests due to human disruption of the historical ecosystem. It is important to remember structure and composition of historical forests for restoration and recognize wholesale changes so that successional forests do not become the new social and cultural baseline.  相似文献   
6.
CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.  相似文献   
7.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   
8.
The use and utility of EMG biofeedback with chronic schizophrenic patients   总被引:1,自引:0,他引:1  
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.We would like to express our appreciation for the contributions the following people made to this project: Drs. Barry Smith, Robert Steele, Agnes Hartfield, Jeffrey Barth, Althea Wagman, and the late Harold Weiner; Earl Downs and the participating staff at Springfield State Hospital Center; and Robert Kline and Michael Kelley, who performed the data analyses. This research was supported in part by a grant from the Computer Science Center at the University of Maryland.  相似文献   
9.
10.
The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post‐translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF‐β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号