首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The spreading ability of Shigella flexneri , a facultative intracellular Gram-negative bacterium, within the host-cell cytoplasm is the result of directional assembly and accumulation of actin filaments at one pole of the bacterium. IcsA/VirG, the 120 kDa outer membrane protein that is required for intracellular motility, is located at the pole of the bacterium where actin polymerization occurs. Bacteria growing in laboratory media and within infected cells release a certain proportion of the surface-exposed IcsA after proteolytic cleavage. In this study, we report the characterization of the sopA gene which is located on the virulence plasmid and encodes the protein responsible for the cleavage of IcsA. The deduced amino acid sequence of SopA exhibits 60% identity with those of the OmpT and OmpP outer membrane proteases of Escherichia coli . The construction and phenotypic characterization of a sopA mutant demonstrated that SopA is required for exclusive polar localization of IcsA on the bacterial surface and proper expression of the motility phenotype in infected cells.  相似文献   
2.
Motile and morphogenetic cellular processes are driven by site-directed assembly of actin filaments. Formins, proteins characterized by formin homology domains FH1 and FH2, are initiators of actin assembly. How formins simply bind to filament barbed ends in rapid equilibrium or find free energy to become a processive motor of filament assembly remains enigmatic. Here we demonstrate that the FH1-FH2 domain accelerates hydrolysis of ATP coupled to profilin-actin polymerization and uses the derived free energy for processive polymerization, increasing 15-fold the rate constant for profilin-actin association to barbed ends. Profilin is required for and takes part in the processive function. Single filaments grow at least 10 microm long from formin bound beads without detaching. Transitory formin-associated processes are generated by poisoning of the processive cycle by barbed-end capping proteins. We successfully reconstitute formin-induced motility in vitro, demonstrating that this mechanism accounts for the puzzlingly rapid formin-induced actin processes observed in vivo.  相似文献   
3.
The actin-related protein 2 and 3 (Arp2/3) complex is a seven-subunit protein complex that nucleates actin filaments at the cell cortex. Despite extensive cross-linking, crystallography, genetic and biochemical studies, the contribution of each subunit to the activity of the complex remains largely unclear. In this study we characterized the function of the 40-kDa subunit, ARPC1/Arc40, of the yeast Arp2/3 complex. We showed that this subunit is indeed a stable component of the Arp2/3 complex, but its highly unusual electrophoretic mobility eluded detection in previous studies. Recombinant Arc40 bound the VCA domain of Wiskott-Aldrich syndrome protein family activators at a K(d) of 0.45 mum, close to that of the full complex with VCA (0.30 microm), and this interaction was dependent on the conserved tryptophan at the COOH terminus of VCA. Using a newly constructed Delta arc40 yeast strain, we showed that loss of Arc40 severely reduced the binding affinity of the Arp2/3 complex with VCA as well as the nucleation activity of the complex, suggesting that Arc40 contains an important contact site of the Arp2/3 complex with VCA. The Delta arc40 cells exhibited reduced growth rate, loss of actin patches, and accumulation of cables like actin aggregates, phenotypes typical of other subunit nulls, suggesting that Arc40 functions exclusively within the Arp2/3 complex.  相似文献   
4.
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.  相似文献   
5.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   
6.

Background

Identification of MET genetic alteration, mutation, or amplification in oropharyngeal squamous cell carcinoma (OPSCC) could lead to development of MET selective kinase inhibitors. The aim of this study was to assess the frequency and prognostic value of MET gene mutation, amplification, and protein expression in primary OPSCC.

Methods

A retrospective chart review was conducted of patients treated for single primary OPSCC between January 2007 and December 2009. Pre-treatment OPSCC tissue samples were analyzed for MET mutations, gene amplification, and overexpression using Sanger sequencing, FISH analysis, and immunohistochemistry respectively. Univariate and multivariate analyses were used to analyze correlations between molecular abnormalities and patient survival.

Results

143 patients were included in this study. Six cases (4%) were identified that had a genetic variation, but previously described mutations such as p.Tyr1235Asp (Y1235D) or p.Tyr1230Cys (Y1230C) were not detected. There were 15 high polysomy cases, and only 3 cases met the criteria for true MET amplification, with ≥10% amplified cells per case. Immunohistochemistry evaluation showed 43% of cases were c-MET negative and in 57% c-MET was observed at the tumor cell level. Multivariate analysis showed no significant association between MET mutation, amplification, or expression and survival.

Conclusions

Our study shows a low frequency of MET mutations and amplification in this cohort of OPSCC. There was no significant correlation between MET mutations, amplification, or expression and patient survival. These results suggest that patient selection based on these MET genetic abnormalities may not be a reliable strategy for therapeutic intervention in OPSCC.  相似文献   
7.
Molecular bases of epithelial cell invasion by Shigella flexneri   总被引:4,自引:0,他引:4  
The pathogenesis of shigellosis is characterized by the capacity of the causative microorganism, Shigella, to invade the epithelial cells that compose the mucosal surface of the colon in humans. The invasive process encompasses several steps which can be summarized as follows: entry of bacteria into epithelial cells involves signalling pathways that elicit a macropinocitic event. Upon contact with the cell surface, S. flexneri activates a Mxi/Spa secretory apparatus encoded by two operons comprising about 25 genes located on a large virulence plasmid of 220 kb. Through this specialized secretory apparatus, Ipa invasins are secreted, two of which (IpaB, 62 kDa and IpaC, 42 kDa) form a complex which is itself able to activate entry via its interaction with the host cell membrane. Interaction of this molecular complex with the cell surface elicits major rearrangements of the host cell cytoskeleton, essentially the polymerization of actin filaments that form bundles supporting the membrane projections which achieve bacterial entry. Active recruitment of the protooncogene pp 60c-src has been demonstrated at the entry site with consequent phosphorylation of cortactin. Also, the small GTPase Rho is controlling the cascade of signals that allows elongation of actin filaments from initial nucleation foci underneath the cell membrane. The regulatory signals involved as well as the proteins recruited indicate that Shigella induces the formation of an adherence plaque at the cell surface in order to achieve entry. Once intracellular, the bacterium lyses its phagocytic vacuole, escapes into the cytoplasm and starts moving the inducing polar, directed polymerization of actin on its surface, due to the expression of IcsA, a 120 kDa outer membrane protein, which is localized at one pole of the microorganism, following cleavage by SopA, a plasmid-encoded surface protease. In the context of polarized epithelial cells, bacteria then reach the intermediate junction and engage their components, particularly the cadherins, to form a protrusion which is actively internalized by the adjacent cell. Bacteria then lyse the two membranes, reach the cytoplasmic compartment again, and resume actin-driven movement.  相似文献   
8.
The VCA domain of the neuronal Wiskott-Aldrich syndrome protein (N-WASP) is a potent activator of the Arp2/3 complex, a 240 kDa heteroheptameric actin-nucleating assembly. We used site-directed spin labeling of N-WASP peptides in conjunction with methyl-TROSY spectra of the intact, selectively labeled Arp2/3 complex to identify regions of the VCA that are proximal to the ARPC3 subunit of the assembly. We also cross-linked CA peptides to the Arp3, Arp2, ARPC1, and ARPC3 subunits. The combined data suggest that the extreme C-terminus of the A region and the C-terminus of the C region of N-WASP are proximal to ARPC3. These results have implications for the mechanism of Arp2/3 complex activation by VCA peptides. This study also demonstrates the utility of NMR spectroscopy for studying ligand binding events in large, asymmetric, macromolecular assemblies.  相似文献   
9.
Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号