首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   53篇
  国内免费   1篇
  2022年   3篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   17篇
  2013年   12篇
  2012年   14篇
  2011年   27篇
  2010年   14篇
  2009年   14篇
  2008年   15篇
  2007年   23篇
  2006年   18篇
  2005年   12篇
  2004年   8篇
  2003年   8篇
  2002年   9篇
  2001年   18篇
  2000年   11篇
  1999年   9篇
  1998年   15篇
  1997年   11篇
  1996年   9篇
  1995年   4篇
  1993年   14篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   10篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   4篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
1.
2.
3.
The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.  相似文献   
4.
Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.  相似文献   
5.
Prepubertal gilts, having undergone a 7-day period of feed restriction to a maintenance ration, were allocated to one of 4 treatments; restricted feeding at 09:00 and 17:00 h for an 8th day both with (Group RN) and without (Group R) administration of the opioid antagonist naloxone hydrochloride (1 mg.kg-1 at 09:30 h followed by 0.5 mg.kg-1 at hourly intervals for 7 h), or feed to appetite with (Group ALN) and without (Group AL) naloxone administration. Gilts were bled at 10-min intervals on Day 8 from morning to evening feed and plasma LH, FSH and prolactin concentrations were measured by radioimmunoassay. Compared with Group R gilts, Group AL gilts exhibited significantly (P less than or equal to 0.05) higher mean and maximum LH concentrations and pulsatility, lower prolactin concentrations (P less than 0.05) but no significant difference in FSH secretion. Naloxone significantly depressed the increase in LH after re-feeding (Group ALN) (P less than 0.05). Once again there were no significant effects on FSH secretion. Naloxone also significantly depressed prolactin secretion in feed-restricted gilts (P less than 0.05). These results confirm that re-feeding of feed-restricted prepubertal gilts stimulates an immediate increase in LH secretion and that this elevation is not mediated via a suppression of inhibitory endogenous opioidergic tone. Rather, naloxone treatment appeared to expose a latent inhibition of LH secretion. The control of LH secretion is distinct from that of FSH in this model.  相似文献   
6.
A cell-free protein synthesis system, derived from brains of 3 mo-old male Fischer-344 rats, has been characterized. The optimum conditions for amino acid incorporation in the system were 5 mM magnesium ion and 200 mM potassium ion. Incorporation depended on the addition of ATP, GTP, and an enegy-generating system, and was sensitive to addition of the drugs aurintricarboxylic acid and sodium fluoride, inhibitors of initiation of protein synthesis. Both 40S and 80S initiation complexes were labeled in vitro, using [35S]methionine. Such labeling was sensitive to the protein synthesis inhibitors, aurintricarboxylic acid and sodium fluoride. The system, which can initiate protein synthesis, should be of use for examining mechanisms which underlie alterations in rat brain protein synthesis induced by various treatments.  相似文献   
7.
Abstract: Free and membrane-bound polysomes were isolated from the cerebral hemispheres and cerebellum of the young adult rabbit. The two polysomal populations were translated in an mRNA-dependent cell-free system derived from rabbit reticulocytes. Analysis of the [35S]methionine-labeled translation products on two-dimensional polyacrylamide gels indicated an efficient separation of the two classes of brain polysomes. The relative synthesis of S100 protein by free and membrane- bound polysomes was determined by direct immuno-precipitation of the cell-free translation products in the presence of detergents to reduce nonspecific trapping. Synthesis of S100 protein was found to be twofold greater on membrane-bound polysomes compared with free polysomes isolated from either the cerebral hemispheres or the cerebellum. In addition, the proportion of poly- (A+)mRNA coding for SlOO protein was also twofold greater in membrane-bound polysomes compared with free polysomes isolated from the cerebral hemispheres. These results indicate that the cytoplasmic S100 protein is synthesized predominantly on membrane-bound polysomes in the rabbit brain. We suggest that the nascent S100 polypeptide chain translation complex is attached to the rough endoplasmic reticulum by an ionic interaction involving a sequence of 13 basic amino acids in S100 protein.  相似文献   
8.
Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (Ika and Ikb, respectively) and the `slender' line L197 (la cry[ill]), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though Ika reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, Ika and Ikb, the wall yield threshold is substantially elevated. Plants possessing Ika may also possess a reduced wall yield coefficient.  相似文献   
9.
Previous work on the growth biophysics of maize (Zea mays L.) primary roots suggested that cell walls in the apical 5 mm of the elongation zone increased their yielding ability as an adaptive response to low turgor and water potential (psi w). To test this hypothesis more directly, we measured the acid-induced extension of isolated walls from roots grown at high (-0.03 MPa) or low (-1.6 MPa) psi w using an extensometer. Acid-induced extension was greatly increased in the apical 5 mm and was largely eliminated in the 5- to 10-mm region of roots grown at low psi w. This pattern is consistent with the maintenance of elongation toward the apex and the shortening of the elongation zone in these roots. Wall proteins extracted from the elongation zone possessed expansin activity, which increased substantially in roots grown at low psi w. Western blots likewise indicated higher expansin abundance in the roots at low psi w. Additionally, the susceptibility of walls to expansin action was higher in the apical 5 mm of roots at low psi w than in roots at high psi w. The basal region of the elongation zone (5-10 mm) did not extend in response to expansins, indicating that loss of susceptibility to expansins was associated with growth cessation in this region. Our results indicate that both the increase in expansin activity and the increase in cell-wall susceptibility to expansins play a role in enhancing cell-wall yielding and, therefore, in maintaining elongation in the apical region of maize primary roots at low psi w.  相似文献   
10.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号