首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   59篇
  2022年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   9篇
  2016年   2篇
  2015年   12篇
  2014年   7篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   12篇
  2006年   6篇
  2005年   9篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   3篇
  1975年   1篇
  1972年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   
3.
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279-287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel.  相似文献   
4.
Monolayers of the negatively charged phospholipid phosphatidylserine (PS) and of the amphoteric phospholipid dioleoylphosphatidylethanolamine (DOPE) were used to assemble bilayers at the tip of patch-recording pipettes. PS bilayers, with seal resistances in the range of gigaohmns (gigaseals), could only be generated when millimolar concentration of divalent cations, Ca++, Mg++, or Ba++ were present in the pipette and bath solutions. In contrast, gigaseals of DOPE were independent of divalent ion concentration in the pH range where DOPE is predominantly neutral (pH 6.5) or positively charged (pH 1.5). At pH 10.0, when most DOPE molecules bear a net negative charge, gigaseals became divalent cation dependent, in a manner quantitatively similar to that of PS at neutral pH. The results indicate that divalent cations play an important role in stabilizing gigaseals of negatively charged lipid but are of no consequence in neutral or positively charged seals.  相似文献   
5.
The effect of clinical concentrations of volatile anesthetics on ryanodine receptors of cardiac and skeletal muscle sarcoplasmic reticulum was evaluated using [3H]ryanodine binding. At 2 volume percent, halothane and enflurane stimulated binding to cardiac SR by 238% and 204%, respectively, while isoflurane had no effect. In contrast, halothane and enflurane had no effect on [3H]ryanodine binding to skeletal ryanodine receptors, while isoflurane produced a significant stimulation. These results suggest that volatile anesthetics interact in a site-specific manner with ryanodine receptors of cardiac or skeletal muscle to effect Ca2+ release-channel gating.  相似文献   
6.
There is increasing evidence that Ca2+ release from sarcoplasmic reticulum (SR) of mammalian skeletal muscle is regulated or modified by several factors including ionic composition of the myoplasm. We have studied the effect of Cl on the release of Ca2+ from the SR of rabbit skeletal muscle in both skinned psoas fibers and in isolated terminal cisternae vesicles. Ca2+ release from the SR in skinned fibers was inferred from increases in isometric tension and the amount of release was assessed by integrating the area under each tension transient. Ca2+ release from isolated SR was measured by rapid filtration of vesicles passively loaded with 45Ca2+. Ca2+ release from SR was stimulated in both preparations by exposure to a solution containing 191 mm choline-Cl, following pre-equilibration in Ca2+-loading solution that had propionate as the major anion. Controls using saponin (50 μg/ml), indicated that the release of Ca2+ was due to direct action of Cl on the SR rather than via depolarization of T-tubules. Procaine (10 mm) totally blocked Cl- and caffeine-elicited tension transients recorded using loading and release solutions having ([Na+] + [K+]) × [Cl] product of 6487.69 mm 2 and 12361.52 mm 2, respectively, and blocked 60% of Ca2+ release in isolated SR vesicles. Surprisingly, procaine had only a minor effect on tension transients elicited by Cl and caffeine together. The data from both preparations suggests that Cl induces a relatively small amount of Ca2+ release from the SR by activating receptors other than RYR-1. In addition, Cl may increase the Ca2+ sensitivity of RYR-1, which would then allow the small initial release of Ca2+ to facilitate further release of Ca2+ from the SR by Ca2+-induced Ca2+ release. Received: 6 February 1996/Revised: 17 July 1996  相似文献   
7.
The significance of polyoxometalates in the field of molecular magnetism is discussed. We show that this kind of inorganic complexes provides remarkable examples for the study of the exchange interactions in clusters. On the other hand, we examine the possibility of using these metal oxide anions as magnetic components of molecular materials containing organic tetrathiafulvalenes as electron donor molecules.  相似文献   
8.
The extracellular and surface polysaccharides produced by Rhizobium species constitute a composite macromolecular interface between the bacterial cell and its environment. Several of these polysaccharides are involved in the complex series of interactions leading to the establishment of an effective Rhizobium-legume symbiosis. Extracellular heteropolysaccharides (EPSs) are found in culture supernatants, while capsular polysaccharides adhere to the cell surface. Cyclic (1–2)--d glucan is a periplasmic oligosaccharide that has also been found in the culture supernatants of some strains. The lipopolysaccharides (LPSs), which form part of the outer membrane and contain the O-somatic antigens, comprise the other major group of extracellular polysaccharides. In this review we will describe the major Rhizobium extracellular structures and their role in symbiosis with leguminous plants.The authors are with the Departamento de Microbiologia y Parasitologia, Facultad de Farmacia. Universidad de Sevilla, 41012 Sevilla, Spain  相似文献   
9.
In Chironomus tentans salivary gland cells, the cytoplasm can be dissected into concentric zones situated at increasing distances from the nuclear envelope. After RNA labeling, the newly made ribosomal subunits are found in the cytoplasm mainly in the neighborhood of the nucleus with a gradient of increasing abundance towards the periphery of the cell. The gradient for the small subunit lasts for a few hours and disappears entirely after treatment with puromycin. The large subunit also forms a gradient but one which is only partially abolished by puromycin. The residual gradient which which is resistant to the addition of the drug is probably due to the binding of some large ribosomal units to the membranes of the endoplasmic reticulum (J.-E. Edstrom and u. Lonn. 1976. J. Cell Biol. 70:562-572, and U. Lonn and J.-E. Edstrom. 1976. J. Cell. Biol. 70:573-580). If growth is inhibited by starvation, only the puromycin-sensitive type gradient is observed for the large subunit, suggesting that the attachment of these newly made subunits to the endoplasmic reticulum membranes will not occur. If, on the other hand, the drug-resistant gradient is allowed to form in feeding animals, it is conserved during a subsequent starvation for longer periods than in control feeding animals. This observation provides a further support for an effect of starvation on the normal turnover of the large subunits associated with the endoplasmic reticulum. These results also indicate a considerable structural stability in the cytoplasm of these cells worth little or no gross redistribution of cytoplasmic structures over a period of at least 6 days.  相似文献   
10.
A voltage-dependent, K+-selective ionic channel from sarcoplasmic reticulum of rabbit skeletal muscle has been studied in a planar phospholipid bilayer membrane. The purpose [corrected] of this work is to study the mechanism by which the channel undergoes transitions between its conducting and nonconducting states. Thermodynamic studies show that the "open" and "closed" states of the channel exist in a voltage-dependent equilibrium, and that the channel displays only a single open state; the channel conductance is 120 pmho in 0.1 M K+. The channel's gating process follows single exponential kinetics at all voltages tested, and the individual opening and closing rate constants are exponentially dependent on voltage. The individual rate constants may also be determined from a stochastic analysis of channel fluctuations among multiple conductance levels. Neither the thermodynamic nor the kinetic parameters of gating depend on the absolute concentration of channels in the bilayer. The results are taken as evidence that the channel gates by an unusually simple two-state conformational mechanism in which the equivalent of 1.1 net charges are moved across the membrane during the formation of the open channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号