首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   10篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   3篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
  1921年   1篇
  1919年   1篇
  1913年   1篇
  1910年   1篇
  1909年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Immature seeds of apricot (Prunus armeniaca L.) were fed the native gibberellin A5 (GA5) as 1- and 1,2-[3H]GA5 (5.3 Curies per millimole to 16 milliCuries per millimole) at doses (42 nanograms to 10.6 micrograms per seed) 2 to 530 times the expected endogenous level. After 4 days of incubation, seeds were extracted and free [3H]GA-like metabolites were separated from the highly H2O-soluble [3H]metabolites. For high specific activity feeds the retention times (Rts) of radioactive peaks were compared with Rts of authentic GAs on sequential gradient-eluted → isocratic eluted reversed-phase C18 high performance liquid chromatography (HPLC) -radiocounting (RC). From high substrate feeds (530 and 230 × expected endogenous levels) HPLC-RC peak groupings were subjected to capillary gas chromatography-selected ion monitoring (GC-SIM), usually six characteristic ions. The major free GA metabolites of [3H] GA5 were identified as GA1, GA3, and GA6 by GC-SIM. The major highly water soluble metabolite of [3H]GA5 at all levels of substrate GA5 had chromatographic characteristics similar to authentic GA1-glucosyl ester. Expressed as a percentage of recovered radioactivity, low substrate [3H]GA5 feeds (2 × expected endogenous level) yielded a broad spectrum of metabolites eluting at the Rts where GA1, GA3, GA5 methyl ester, GA6, GA22, GA29 (17, 14, 1.6, 7, 1.1, 0.5%, respectively) and GA glucosyl conjugates of GA1, GA3, GA5, and GA8 (33, 11, 1, 0.1%, respectively) elute. Metabolites were also present at Rts where GA glucosyl conjugates of GA6 and GA29 would be expected to elute (8 and 0.1%, respectively). Only 5% of the radioactivity remained as GA5. Increasing substrate GA5 levels increased the proportion of metabolites with HPLC Rts similar to GA1, GA6, and especially GA1 glucosyl ester, primarily at the expense of metabolites with HPLC Rts similar to GA3, GA3-glucosyl ester, and a postulated conjugate of GA6. There was evidence that high doses of substrate GA5 induced new metabolites which often, but not always, differed from GA1, GA3, and GA6 in HPLC Rt. These same metabolites, when analyzed by GC-SIM yielded m/e ions the same as the M+ and other characteristic m/e ions of the above GAs, albeit at differing GC Rt and relative intensities.  相似文献   
2.
Gibberellins (GAs) A1, A5, and A29 were identified, and also GA32 was confirmed, as endogenous GAs of immature seeds (3-4 weeks after anthesis, 0.25-0.5 gram fresh weight) of apricot (Prunus armeniaca L.) based on capillary gas chromatography (GC), retention time (Rt), and selected ion monitoring (SIM), in comparison with authentic standards. Fractions subjected to GC-SIM were purified and separated using sequential solvent partitioning → paper chromatography → reverse phase C18 high performance liquid chromatography (HPLC) → bioassay on dwarf rice cv Tan-ginbozu. Two other peaks of free GA-like bioactivity (microdrop and immersion dwarf rice assays) were eluted from C18 HPLC at Rts where GA4/7 and GA8 (or other GAs with similar structures) would elute. Also, three unidentified GA glucoside-like compounds (based on bioactivity on the immersion assay, and no bioactivity on the microdrop assay) were noted. There were very high amounts of GA32 (112 ng of GA3 equivalents per gram fresh weight), and minor amounts (0.5 ng of GA3 equivalents) for each of GA1 and GA5, respectively, based on the microdrop assay.  相似文献   
3.
The specificity, affinity and stoichiometry of the interaction between avidin and glycosaminoglycans (GAGs) have been investigated using heparin-coated microtiter-plate assays, a filter binding assay and surface plasmon resonance (SPR) analysis using a BIAcore 2000 biosensor. Avidin binds heparin and heparan sulfate, and chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate or hyaluronan were unable to compete for binding. Highest-affinity binding was observed with heparin, and weaker binding was seen when using heparan sulfate or low molecular weight heparin preparations. This indicated that only specific polysaccharide structures tightly interact with avidin. Approximately two avidin molecules bind to each heparin molecule with an overall affinity of 160 nM. The interaction is pH dependent, increasing five-fold upon decreasing the pH from 7.5 to 5.5, while binding was negligible at pH 9. We demonstrate the potential of fluorescent avidin derivatives as a tool for the detection of heparin and heparan sulfates on surfaces by application to both heparin immobilized on polystyrene plates and heparan sulfate on cell surfaces.  相似文献   
4.
Dronc is a caspase recruitment domain-containing Drosophila caspase that is expressed in a temporally and spatially restricted fashion during development. Dronc is the only fly caspase known to be regulated by the hormone ecdysone. Here we show that ectopic expression of dronc in the developing fly eye leads to increased cell death and an ablated eye phenotype that can be suppressed by halving the dosage of the genes in the H99 complex (reaper, hid, and grim) and enhanced by mutations in diap1. In contrast to previous reports, we show that the dronc eye ablation phenotype can be suppressed by coexpression of the baculoviral caspase inhibitor p35. Dronc also interacts, both genetically and biochemically, with the CED-4/Apaf-1 fly homolog, Dark. Furthermore, extracts made from Dark homozygous mutant flies have reduced ability to process Dronc, showing that Dark is required for Dronc processing. Finally, using the RNA interference technique, we show that loss of Dronc function in early Drosophila embryos results in a dramatic decrease in cell death, indicating that Dronc is important for programmed cell death during embryogenesis. These results suggest that Dronc is a key caspase mediating programmed cell death in Drosophila.  相似文献   
5.
6.
7.
Gandhi NS  Coombe DR  Mancera RL 《Biochemistry》2008,47(17):4851-4862
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell-cell adhesion. PECAM-1 has been shown to mediate cell-cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号