首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
  国内免费   9篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   11篇
  2014年   9篇
  2013年   9篇
  2012年   7篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1970年   3篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有184条查询结果,搜索用时 171 毫秒
1.
2.
3.
4.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
5.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
6.
7.
A lumped model for cell growth and secondary metabolite production in an immobilized live cell bioreactor has been developed. This model is applied here to simulate the performance of an immobilized bioreactor under steady-state conditions and under conditions of periodically varying concentration of a growth-limiting substrate. The results of the simulation study were experimentally verified in the case of the production of the antibiotic candicidin by Streptomyces griseus in an immobilized bioreactor with forced periodic operation. The results of the studies suggest that periodically operated immobilized live cell bioreactors can provide a potent alternative for the production of non-growth-associated biochemicals, as compared to free cell fermentations, pulsed fermentations with process cycle regeneration, and nonregenerated bioreactors. This work has demonstrated that by frequent pulsing of the growth limiting nutrient, stable extended production can be obtained at high specific cellular productivities.  相似文献   
8.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
9.
In this study, live cells of Brevibacterium flavum were immobilized for the production of glutamic acid. The reason for such a choice was that glutamic acid fermentation is an extensively studied fermentation and one which requires the viability of entire cellular faculties for the acid production. Brevibacterium flavum was chosen because it is an industrially used bacterium, and is very potent via a vis glutamic acid production. Studies were performed to find aeration and agitation conditions for optimal growth and glutamic acid productivity. Experiments were also done to find the optimum harvesting time. The cell activity peaks during the run of fermentation, and the time at which the peak occurs, was found. Conventional methods for immobilizing the cells on collagen were found to be lacking. The pH and drying were the two main reasons for loss of viability of the cells; the latter being more important. A modified immobilization procedure has been devised, which can immobilize live cells at any given pH and ionic strength, in contrast to the conventional method which requires the pH to be above 11 or below 3. This new method involves dialysis of collagen in suitable dialysis bags against water at pH7 (or buffer at any desired pH). The dialysed collagen blended at 20,000 rpm, resulted in a very smooth dispersion, unnoticeably different from collagen dispersion prepared at pH 11. The dispersed collagen was then cast and dried at an elevated temperature, and high air flow rate over the cast membrane, decreasing the time of drying from 6–8 hr ( in the conventional method) to 1.5–2 hr. The membrane has been tested for glutamic acid producing capabilities in a column reactor with the membrane spirally wound. The reactor has been operated under continuous conditions for 5–10 days with stable activities.  相似文献   
10.
Cells of the C3H10T12CL8 line, which are nonmyoblastic in nature, form functional myotubes when treated with low concentrations of 5-azacytidine. Further characterization of the myotubes revealed that they arise from the fusion of mononucleated precursors and not as a result of endoreplication. They accumulate histochemically detectable myosin ATPase activity as well as acetylcholine receptors capable of binding radioactively labeled α-bungarotoxin. The deoxy analog, 5-aza-2′-deoxycytidine, induced myogenic conversion at one-tenth of the maximally effective concentration of 5-azacytidine. The ability of both analogs to induce myotube formation and to cause cytotoxicity was strongly influenced by cotreatment with certain pyrimidine nucleosides. These effects were consistent with a requirement for metabolism of both aza compounds to phosphorylated derivatives and with a mechanism of action based on their incorporation into DNA. Concentrations of the analogs causing myogenic conversion did not substantially alter rates of DNA, RNA, or protein synthesis as measured by precursor incorporation into intact cells. The induction of myotubes by 5-azacytidine in cells synchronized by two different methods required that treatment with the analog was carried out at a critical phase early in S phase. Thus the mechanism of drug action appears to be linked to specific DNA synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号