首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2006年   1篇
  2003年   2篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240–250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53''s response to DNA damage.  相似文献   
2.
3.
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.  相似文献   
4.
5.
The incidence of malignant melanoma has rapidly increased in recent years. Evidence points to the role of inheritance in melanoma development, but specific genetic risk factors are not well understood. Recent reports indicate a high prevalence of somatic mutations of the BRAF gene in melanomas and melanocytic nevi. Here we report that germ-line single nucleotide polymorphisms (SNPs) in BRAF are significantly associated with melanoma in German males, but not females. At-risk haplotypes of BRAF are shown. Based upon their frequencies, we estimate that BRAF could account for a proportion attributable risk of developing melanoma of 4% in the German population. The causal variant has yet to be determined. The burden of disease associated with this variant is greater than that associated with the major melanoma susceptibility locus CDKN2A, which has an estimated attributable risk of less than 1%.  相似文献   
6.
BACKGROUND: Germline mutations in BRCA1/2 greatly elevate risks of breast and ovarian cancers, but the role of these genes in tumourigenesis of other cancer types is still being investigated. OBJECTIVE: We report on an investigation of BRCA1/2 mutations and their loss of heterozygosity (LOH) in a patient with a strong family history of breast cancer who was diagnosed with consecutive primary cervical, ovarian and lung carcinomas. METHODS AND RESULTS: BRCA1/2 mutation screening of the proband revealed a common familial breast- and ovarian cancer-associated germline BRCA2 mutation (3034del4bp). We then performed LOH analysis for BRCA2 in lung adenocarcinoma tissue of the patient. Using the laser-capture microdissection (LCM) technique, we obtained pure populations of neoplastic cells from which DNA could be extracted. Mutation analysis by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing revealed loss of the mutant allele in the adenocarcinoma tumour tissue. CONCLUSION: To our knowledge, this is the first report of investigation for LOH for BRCA2 in primary lung adenocarcinoma tissue of a patient with multiple primary tumours related to a familial germline BRCA2 mutation. Interestingly, it was the mutant, not the wild-type, allele which was lost in the lung adenocarcinoma tissue.  相似文献   
7.
Cholangiocellular carcinoma (CCA) of the liver was the target of more interest, recently, due mainly to its increased incidence and possible association to new environmental factors. Somatic mitochondrial DNA (mtDNA) mutations have been found in several cancers. Some of these malignancies contain changes of mtDNA, which are not or, very rarely, found in the mtDNA databases. In terms of evolutionary genetics and oncology, these data are extremely interesting and may be considered a sign of poor fitness, which may conduct in some way to different cellular processes, including carcinogenesis. MitoChip analysis is a strong tool for investigations in experimental oncology and was carried out on three CCA cell lines (HuCCT1, Huh-28 and OZ) with different outcome in human and a Papova-immortalized normal hepatocyte cell line (THLE-3). Real time quantitative PCR, western blot analysis, transmission electron microscopy, confocal laser microscopy, and metabolic assays including L-Lactate and NAD+/NADH assays were meticulously used to identify mtDNA copy number, oxidative phosphorylation (OXPHOS) content, ultrastructural morphology, mitochondrial membrane potential (ΔΨm), and differential composition of metabolites, respectively. Among 102 mtDNA changes observed in the CCA cell lines, 28 were non-synonymous coding region alterations resulting in an amino acid change. Thirty-eight were synonymous and 30 involved ribosomal RNA (rRNA) and transfer RNA (tRNA) regions. We found three new heteroplasmic mutations in two CCA cell lines (HuCCT1 and Huh-28). Interestingly, mtDNA copy number was decreased in all three CCA cell lines, while complexes I and III were decreased with depolarization of mitochondria. L-Lactate and NAD+/NADH assays were increased in all three CCA cell lines. MtDNA alterations seem to be a common event in CCA. This is the first study using MitoChip analysis with comprehensive metabolic studies in CCA cell lines potentially creating a platform for future studies on the interactions between normal and neoplastic cells.  相似文献   
8.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   
9.
10.
The major clinical problem in human cancer is metastasis. Metastases are the cause of 90% of human cancer deaths. TAp63 is a critical suppressor of tumorigenesis and metastasis. ΔNp63 acts as a dominant-negative inhibitor to block the function of p53 and TAp63. Although several ubiquitin E3 ligases have been reported to regulate p63 stability, the mechanism of p63 regulation remains partially understood. Herein, we show that CHIP, an E3 ligase with a U-box domain, physically interacts with p63 and promotes p63 degradation. Notably, Hsp70 depletion by siRNA stabilizes TAp63 in H1299 cells and destabilizes ΔNp63 in SCC9 cells. Loss of Hsp70 results in a reduction in the TAp63-CHIP interaction in H1299 cells and an increase in the interaction between ΔNp63 and CHIP in SCC9 cells. Our results reveal that Hsp70 acts as a molecular switch to control CHIP-mediated ubiquitination and degradation of p63 isoforms. Furthermore, regulation of p63 by the Hsp70-CHIP axis contributes to the migration and invasion of tumor cells. Hence, our findings demonstrate that Hsp70 is a crucial regulator of CHIP-mediated ubiquitination and degradation of p63 isoforms and identify a new pathway for maintaining TAp63 or ΔNp63 stability in cancers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号