首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Small ruminants are generally classified as either browsers or frugivores. We compared intake and digestion in one browsing species, the pudu (Pudu pudu), body weight 9 kg, and three frugivorous species, the red brocket (Mazama americana), 20 kg, the bay duiker (Cephalophus dorsalis), 12 kg, and Maxwell's duiker (C. maxwellii), 9 kg. Rations comprised: a commercial grain and alfalfa pellet, a small amount of vegetables, and mixed hay. Across species, neutral-detergent fiber (insoluble fiber) consumed averaged 34.2 ± 2.6% of dry matter (DM) while the crude protein consumed averaged 16.1 ± 0.5% DM. Apparent DM digestion was similar in pudu (75.2 ± 4.7%), brocket (73.2 ± 1.1%), and Maxwell's duikers (73.0 ± 2.8%), and significantly lower (P = 0.0167) in bay duikers (67.1 ± 4.3%). There were significant differences among species in digestibilities of neutral-detergent fiber, hemicellulose, and cellulose, but they did not follow body size differences, since larger species were expected to show higher digestion coefficients for fiber compared to smaller species. The type of fiber fed may have influenced these results. Frugivores may be adapted to a diet of soluble fibers, as might be found in wild fruits, instead of the insoluble fibers in the diet fed. Passage trials were conducted on the two smallest species. The mean transit time for pudu was 29.9 ± 0.8 hr, and for the Maxwell's duiker was 42.2 ± 6.4 hr. © 1996 Wiley-Liss, Inc.  相似文献   
2.
3.
In a continuation of our study of dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of differences in dietary macronutrient content between chimpanzees and cercopithecine monkeys. Previously we have shown that chimpanzee and monkey diets differ markedly in plant part and species content. We now examine whether this diet diversity is reflected in markedly different dietary macronutrient levels or the different feeding strategies yield the same macronutrient levels in their diets. For each primate group we calculated the total weighted mean dietary content of 4 macronutrients: crude lipid (lipid), crude protein (CP), water-soluble carbohydrates (WSC), and total nonstructural carbohydrates (TNC). We also calculated 4 fiber fractions: neutral-detergent fiber (NDF), which includes the subfractions hemicellulose (HC), cellulose (Cs), and sulfuric acid lignin (Ls). The HC and Cs are potentially fermentable fibers and would contribute to the energy provided by plant food, depending on the hind gut fermenting capacity of the individual primate species. The chimpanzee diet contained higher levels of WSC and TNC because during times of fruit abundance the chimpanzees took special advantage of ripe fruit, while the monkeys did not. The monkey diets contained higher levels of CP because the monkeys consumed a constant amount of leaf throughout the year. All four primate species consumed diets with similar NDF levels. However, the chimpanzees also took advantage of periods of ripe fruit abundance to decrease their Ls levels and to increase their HC levels. Conversely, the monkey diets maintained constant levels of the different fiber fractions thoughout the year. Nevertheless, despite these differences, the diets of the 4 frugivores were surprisingly similar, considering the substantial differences in body size. We conclude that the chimpanzee diet is of higher quality, particularly of lower fiber content, than expected on the basis of their body size.  相似文献   
4.
5.
6.
7.
We studied the effects of tempol, an oxygen radical scavenger, on hydrosaline balance in rats with acute sodium overload. Male rats with free access to water were injected with isotonic (control group) or hypertonic saline solution (0.80 mol/l NaCl) either alone (Na group) or with tempol (Na-T group). Hydrosaline balance was determined during a 90 min experimental period. Protein expressions of aquaporin 1 (AQP1), aquaporin 2 (AQP2), angiotensin II (Ang II) and endothelial nitric oxide synthase (eNOS) were measured in renal tissue. Water intake, creatinine clearance, diuresis and natriuresis increased in the Na group. Under conditions of sodium overload, tempol increased plasma sodium and protein levels and increased diuresis, natriuresis and sodium excretion. Tempol also decreased water intake without affecting creatinine clearance. AQP1 and eNOS were increased and Ang II decreased in the renal cortex of the Na group, whereas AQP2 was increased in the renal medulla. Nonglycosylated AQP1 and eNOS were increased further in the renal cortex of the Na-T group, whereas AQP2 was decreased in the renal medulla and was localized mainly in the cell membrane. Moreover, p47-phox immunostaining was increased in the hypothalamus of Na group, and this increase was prevented by tempol. Our findings suggest that tempol causes hypernatremia after acute sodium overload by inhibiting the thirst mechanism and facilitating diuresis, despite increasing renal eNOS expression and natriuresis.  相似文献   
8.
Bacterial species and evolution: Theoretical and practical perspectives   总被引:2,自引:0,他引:2  
A discussion of the species problem in modern evolutionary biology serves as the point of departure for an exploration of how the basic science aspects of this problem relate to efforts to map bacterial diversity for practical pursuits—for prospecting among the bacteria for useful genes and gene-products. Out of a confusing array of species concepts, the Cohesion Species Concept seems the most appropriate and useful for analyzing bacterial diversity. Techniques of allozyme analysis and DNA fingerprinting can be used to put this concept into practice to map bacterial genetic diversity, though the concept requires minor modification to encompass cases of complete asexuality. Examples from studies of phenetically definedBacillus species provide very partial maps of genetic population structure. A major conclusion is that such maps frequently reveal deep genetic subdivision within the phenetically defined specles; divisions that in some cases are clearly distinct genetic species. Knowledge of such subdivisions is bound to make prospecting within bacterial diversity more effective. Under the general concept of genetic cohesion a hypothetical framework for thinking about the full range of species conditions that might exist among bacteria is developed and the consequences of each such model for species delineation, and species identification are discussed. Modes of bacterial evolution, and a theory of bacterial speciation with and without genetic recombination, are examined. The essay concludes with thoughts about prospects for very extensive mapping of bacterial diversity in the service of future efforts to find useful products. In this context, evolutionary biology becomes the handmaiden of important industrial activities. A few examples of past success in commercializing bacterial gene-products from species ofBacillus and a few other bacteria are reviewed.  相似文献   
9.
In order to understand dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of plant diets between chimpanzees and cercopithecine monkeys that controls for food abundance. Our aim was to test the hypothesis that monkeys have a more diverse diet as a result of their dietary tolerance for chemical antifeedants. Our study species are chimpanzees, blue monkeys, redtail monkeys, and gray-cheeked mangabeys living in overlapping ranges in Kibale National Park, Uganda. We indexed food abundance by the percentage of trees having ripe fruit within the range of each group; it varied widely during the year. Chimpanzees spent almost 3 times as much of their feeding time eating ripe fruits as the monkeys did and confined their diets almost exclusively to ripe fruits when they were abundant. Monkeys maintained a diverse diet at all times. When ripe fruit was scarce chimpanzee and monkey diets diverged. Chimpanzees relied on piths as their main fallback food, whereas monkeys turned to unripe fruits and seeds. For each primate group we calculated the total weighted mean intake of 5 antifeedants; condensed tannins (CT), total tannins assayed by radial diffusion (RD), monoterpenoids (MT), triterpenoids (TT), and neutral-detergent fiber (NDF). Monkeys had absolutely higher intakes of CT, RD, MT, and TT than those of chimpanzees, and their intake of NDF did not differ from that of chimpanzees, appearing relatively high given their lower body weights. However contrary to expectation, dietary divergence during fruit scarcity was not associated with any change in absolute or relative intake of antifeedants. For example, fruit scarcity did not affect the relative intake of antifeedants by cercopithecines compared to chimpanzees. Our results establish chimpanzees as ripe-fruit specialists, whereas cercopithecines are generalists with a higher intake of antifeedants. The low representation of ripe fruits in the diets of cercopithecines has not been explained. An important next step is to test the hypothesis that the difference between Kibale chimpanzees and cercopithecines represents a more general difference between apes and monkeys.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号