首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   29篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   11篇
  2016年   7篇
  2015年   18篇
  2014年   13篇
  2013年   25篇
  2012年   22篇
  2011年   24篇
  2010年   16篇
  2009年   10篇
  2008年   20篇
  2007年   23篇
  2006年   20篇
  2005年   17篇
  2004年   15篇
  2003年   4篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   12篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
1.
2.
3.
To optimize the conversion of carbohydrates to ethanol, strains of several Saccharomyces species were examined for the ability to grow and ferment in a range of sucrose and ethanol concentrations. A total of 632 wine yeasts, most of them isolated from wineries in Andalusia and Extremadura, southwestern Spain, were subjected to screening and selection. Growth and fermentative capacity in different ethanol and sucrose concentrations varied from one strain to another. There was no correlation between growth and fermentative capacity. The best 35 strains grew in 15% ethanol and fermented in 18% ethanol. Ethanol accumulated, although at a reduced rate, after the cells stopped growing. Most yeast strains were highly fermentative in 50% sucrose. Some of them effectively utilized the carbohydrates of the culture, yielding final ethanol concentrations of > 14%. Of the 35 selected strains, 16 were promising for genetic analysis and breeding because of their capacity to sporulate. These strains were homothallic, and their spores were viable. The meiotic products analyzed so far were also homothallic.  相似文献   
4.
In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements. In particular, photosensitization experiments on porphyra-334 support the participation of the triplet state in the photodecomposition mechanism yielding a more precise value of [capital Phi](T). As well, photoacoustic calorimetry experiments allowed the first direct quantification of the nonradiative relaxation pathways of the excited MAAs in solution, corroborating that the vast majority (ca. 97%) of the absorbed energy is promptly delivered to the surroundings as heat, consistently with the low photodecomposition and emission yields observed.  相似文献   
5.
The 70-kilodalton heat shock protein (hsp70) family of molecular chaperones, which contains both stress-inducible and normally abundant constitutive members, is highly conserved across distantly related taxa. Analysis of this protein family in individuals from an outbred population of tropical topminnows, Poeciliopsis gracilis, showed that while constitutive hsp70 family members showed no variation in protein isoforms, inducibly synthesized hsp70 was polymorphic. Several species of Poeciliopsis adapted to desert environments exhibited lower levels of inducible hsp70 polymorphism than the tropical species, but constitutive forms were identical to those in P. gracilis, as they were in the confamilial species Gambusia affinis. These differences suggest that inducible and constitutive members of this family are under different evolutionary constraints and may indicate differences in their function within the cell. Also, northern desert species of Poeciliopsis synthesize a subset of the inducible hsp70 isoforms seen in tropical species. This distribution supports the theory that ancestral tropical fish migrated northward and colonized desert streams; the subsequent decrease in variation of inducible hsp70 may have been due to genetic drift or a consequence of adaptation to the desert environment. Higher levels of variability were found when the 30- kilodalton heat shock protein (hsp30) family was analyzed within different strains of two desert species of Poeciliopsis and also in wild-caught individuals of Gambusia affinis. In both cases the distribution of hsp30 isoform diversity was similar to that seen previously with allozyme polymorphisms.   相似文献   
6.
A study is presented of the liver protein gain during the early stages of postnatal development. Fractional rates of protein synthesis and degradation were determined in vivo in livers of 4-day-old mice. At this age, liver protein accumulated at a rate of 18% per day. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was extimated as the balance between synthesis and accumulation of stable liver proteins, or from the disappearance of radioactivity from liver protein previously labelled by the administration of NaH14CO3. We found that the neonatal livers: (1) synthesize 139% as much protein per unit time and unit mass as adult tissue, which is accounted for by a higher ribosome concentration (synthesis per mg of RNA was the same); (2) retain 39% of the newly synthesized protein as stable liver components (compared with 48% in adult mice); (3) degrade protein at 56% of the rate in the adult liver. This lower rate of degradation is quantitatively the most significant difference between the growing and non-growing liver.  相似文献   
7.
The effect of protein depletion and refeeding on the metabolism of mouse liver nuclear proteins was studied. Five days protein depletion caused a 35% decrease in total nuclear protein. A fast recovery of the lost proteins, except histones, was induced when depleted mice were refed with a normal diet. Depletion caused a decrease in total nuclear protein synthesis, whereas refeeding quickly restored its normal value. The rates of total nuclear protein breakdown were estimated either as the difference between synthesis and protein gain or from the decay of radioactivity in protein labeled by the administration of both sodium [14C]bicarbonate and [35S]methionine. By these procedures, it was found that refeeding caused a slowdown in total nuclear protein breakdown. Hence, the recovery of the protein content observed during refeeding is due to both a restoration of synthesis and a decrease of breakdown. The [14C]bicarbonate procedure did not permit to obtain a high efficiency of label and, therefore, it was unsatisfactory for the measurement of the breakdown of fractionated nuclear proteins. A labeling procedure using [35S]methionine was designed for adequate measures of the decay of radioactivity in these proteins. This allows us to find that a slow down in breakdown affects similarly during refeeding to histones, to non histones, and to a fraction which contains ribonucleoproteins and soluble proteins.  相似文献   
8.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   
9.
The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.  相似文献   
10.
All together now     
Maintenance of genomic stability during eukaryotic cell division relies on the Spindle Assembly Checkpoint (SAC), which has evolved as a surveillance mechanism that monitors kinetochore-microtubule attachment and prevents APC/C-mediated mitotic exit until all chromosomes are properly attached to the mitotic spindle. Reversible protein phosphorylation has long been accredited as a regulatory mechanism of the SAC. Nevertheless, knowledge of how several mitotic kinases act in concert within the signaling pathway to orchestrate SAC function is still emerging. In a recent study, we undertook a comprehensive dissection of the hierarchical framework controlling SAC function in Drosophila cells. We found that Polo lies at the top of the SAC pathway promoting the efficient recruitment of Mps1 to unattached kinetochores. This renders Mps1 fully active to control BubR1 phosphorylation that generates the 3F3/2 phosphoepitope at tensionless kinetochores. We have proposed that Polo is required for SAC function and that the molecular outcome of Mps1-dependent 3F3/2 formation is to promote the association of Cdc20 with BubR1 allowing proper kinetochore recruitment of Cdc20 and efficient assembly of the Mitotic Checkpoint Complex (MCC) required for a sustained SAC response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号