首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   23篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   10篇
  2012年   7篇
  2011年   12篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1981年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1966年   2篇
  1963年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1928年   1篇
  1923年   2篇
  1874年   1篇
排序方式: 共有170条查询结果,搜索用时 16 毫秒
1.
2.
Seasonal carbon isotope discrimination in a grassland community   总被引:11,自引:0,他引:11  
Summary Grassland communities of arid western North America are often characterized by a seasonal increase in ambient temperature and evaporative demand and a corresponding decline in soil moisture availability. As the environment changes, particular species could respond differently, which should be reflected in a number of physiological processes. Carbon isotope discrimination varies during photosynthetic activity as a function of both stomatal aperture and the biochemistry of the fixation process, and provides an integrated measure of plant response to seasonal changes in the environment. We measured the seasonal course of carbon isotope discrimination in 42 grassland species to evaluate changes in gas exchange processes in response to these varying environmental factors. The seasonal courses were then used to identify community-wide patterns associated with life form, with phenology and with differences between grasses and forbs. Significant differences were detected in the following comparisons: (1) Carbon isotope discrimination decreased throughout the growing season; (2) perennial species discriminated less than annual species; (3) grasses discriminated less than forbs; and (4) early flowering species discriminated more than the later flowering ones. These comparisons suggested that (1) species active only during the initial, less stressful months of the growing season used water less efficiently, and (2) that physiological responses increasing the ratio of carbon fixed to water lost were common in these grassland species, and were correlated with the increase in evaporative demand and the decrease in soil moisture.  相似文献   
3.
In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.  相似文献   
4.
5.
6.
J M Rosen  S L Woo  J P Comstock 《Biochemistry》1975,14(13):2895-2903
Casein mRNA was isolated and partially purified from RNA extracts of rat lactating mammary glands and translated in a teterologous cell-free protein synthesizing system derived from wheat germ. Casein mRNA activity was assayed by immunoprecipitation using a specific antiserum prepared against a mixture of the purified rat caseins. Properties of rat casein mRNA were examined using a variety of sizing techniques, including chromatography on Sepharose 4B, sedimentation on sucrose gradients after heat denaturation, and electrophoresis on 2.5% agarose gels in 6 M urea. Casein mRNA activity was found in an 8-16S region after gradient centrifugation with the peak occurring at 10.5 S. In addition, the binding of rat casein mRNA to dT-cellulose was examined. Only 40% of the total casein mRNA activity was selectively retained. A partial purification of casein mRNA was accomplished by a combination of these sizing and affinity chromatography techniques. In the purified preparations casein mRNA activity comprises approximately 90% of the total mRNA activity. Characterization of this material by agarose gel electrophoresis revealed two main bands of RNA at approximately 12 and 16 S, both containing casein mRNA activity. These mRNAs were of the correct size to code for two of the principal rat caseins of approximately 25,000 and 42,000 molecular weights. Casein mRNA and total mRNA activities were then compared in total RNA extracts at various stages of normal mammary gland development in the rat, i.e. during pregnancy, lactation, and involution following weaning. A selective induction of casein mRNA activity compared to total mRNA activity was found to occur during pregnancy and lactation. Moreover, a selective loss of activity was also observed during mammary gland involution. A surprisingly high level of casein mRNA activity was found in RNA extracts from early and midpregnant mammary glands.  相似文献   
7.
There is extensive evidence implicating the intestinal microbiota in inflammatory bowel disease [IBD], but no microbial agent has been identified as a sole causative agent. Bacteroidales are numerically dominant intestinal organisms that associate with the mucosal surface and have properties that both positively and negatively affect the host. To determine precise numbers and species of Bacteroidales adherent to the mucosal surface in IBD patients, we performed a comprehensive culture based analysis of intestinal biopsies from pediatric Crohn''s disease [CD], ulcerative colitis [UC], and control subjects. We obtained biopsies from 94 patients and used multiplex PCR or 16S rDNA sequencing of Bacteroidales isolates for species identification. Eighteen different Bacteroidales species were identified in the study group, with up to ten different species per biopsy, a number higher than demonstrated using 16S rRNA gene sequencing methods. Species diversity was decreased in IBD compared to controls and with increasingly inflamed tissue. There were significant differences in predominant Bacteroidales species between biopsies from the three groups and from inflamed and uninflamed sites. Parabacteroides distasonis significantly decreased in inflamed tissue. All 373 Bacteroidales isolates collected in this study grew with mucin as the only utilizable carbon source suggesting this is a non-pathogenic feature of this bacterial order. Bacteroides fragilis isolates with the enterotoxin gene [bft], previously associated with flares of colitis, were not found more often at inflamed colonic sites or within IBD subjects. B. fragilis isolates with the ability to synthesize the immunomodulatory polysaccharide A [PSA], previously shown to be protective in murine models of colitis, were not detected more often from healthy versus inflamed tissue.  相似文献   
8.
The highly threatened African elephants have recently been subdivided into two species, Loxodonta africana (savannah or bush elephant) and L. cyclotis (forest elephant) based on morphological and molecular studies. A molecular genetic assessment of 16 microsatellite loci across 20 populations (189 individuals) affirms species level genetic differentiation and provides robust genotypic assessment of species affiliation. Savannah elephant populations show modest levels of phylogeographic subdivision based on composite microsatellite genotype, an indication of recent population isolation and restricted gene flow between locales. The savannah elephants show significantly lower genetic diversity than forest elephants, probably reflecting a founder effect in the recent history of the savannah species.  相似文献   
9.
Water deficits and hydraulic limits to leaf water supply   总被引:30,自引:1,他引:29  
Many aspects of plant water use -- particularly in response to soil drought -- may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Psi) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modelling the changes in hydraulic conductance with pressure gradients in the continuum allows the prediction of water use as a function of soil environment and plant architectural and xylem traits. Large differences in water use between species can be attributed in part to differences in their 'hydraulic equipment' that is presumably optimized for drawing water from a particular temporal and spatial niche in the soil environment. A number of studies have identified hydraulic limits as the cause of partial or complete foliar dieback in response to drought. The interactions between root:shoot ratio, rooting depth, xylem properties, and soil properties in influencing the limits to canopy water supply can be used to predict which combinations should optimize water use in a given circumstance. The hydraulic approach can improve our understanding of the coupling of canopy processes to soil environment, and the adaptive significance of stomatal behaviour.  相似文献   
10.
The coevolution of humans with their intestinal microflora has resulted in cooperative relationships that have shaped the biology and the genomes of these symbiotic partners. Bacteroides thetaiotaomicron is one such bacterial symbiont that is a dominant member of the intestinal microbiota of humans and other mammals. The recent report of the genome sequence of B. thetaiotaomicron is the first reported for an abundant Gram-negative organism of the human colonic microbiota and, as such, provides the first glimpse on a genomic scale of the genetic arsenal used by a Gram-negative symbiont to dominate in this ecosystem. The genome has revealed large expansions of many paralogous groups of genes that encode products essential to the organism's ability to successfully compete in this environment. Most noteable is the organism's abundant machinery for utilizing a large variety of complex polysaccharides as a source of carbon and energy. The proteome also reveals the organism's extensive ability to adapt and regulate expression of its genes in response to the changing ecosystem. These factors, as well as others highlighted below, suggest an incredibly flexible and adaptable organism that is exquisitely equipped to dominate in its challenging and competitive niche.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号