首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   30篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   5篇
  2012年   8篇
  2011年   7篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   1篇
  2001年   8篇
  2000年   16篇
  1999年   13篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有220条查询结果,搜索用时 859 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
Detached roots and nodules of the N2-fixing species, Albus glutinosa (European black alder), actively assimilate CO2. The maximum rates of dark CO2 fixation observed for detached nodules and roots were 15 and 3 micromoles CO2 fixed per gram dry weight per hour, respectively. The net incorporation of CO2 in these tissues was catalyzed by phosphoenolpyruvate carboxylase which produces organic acids, some of which are used in the synthesis of the amino acids, aspartate, glutamate, and citrulline and by carbamyl phosphate synthetase. The latter accounts for approximately 30 to 40% of the CO2 fixed and provides carbamyl phosphate for the synthesis of citrulline. Results of labeling studies suggest that there are multiple pools of malate present in nodules. The major pool is apparently metabolically inactive and of unknown function while the smaller pool is rapidly utilized in the synthesis of amino acids. Dark CO2 fixation and N2 fixation in nodules decreased after treatment of nodulated plants with nitrate while the percentage of the total 14C incorporated into organic acids increased. Phosphoenolpyruvate carboxylase and carbamyl phosphate synthetase play key roles in the synthesis of amino acids including citrulline and in the metabolism of N2-fixing nodules and roots of alder.  相似文献   
3.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
4.
The pattern of assimilation of NH4+ by Alnus glutinosa, a N2-fixing, nonleguminous angiosperm, was examined. Detached nodules, roots, and nodulated roots of intact plants were exposed to 13NH4+ for up to 15 minutes. Glutamine was the most highly labeled compound at all times; the only other compound labeled significantly was glutamate. Similar results were obtained after incubating soybean (L. merr) nodules and roots with 13NH4+. These observations and the results of pulse-labeling and inhibitor studies with nodules of Alnus were distinctly different from those predicted for the assimilation of NH4+ via glutamine synthetase and glutamate synthase and suggest that glutamate dehydrogenase may play a major role in the assimilation of exogenously supplied NH4+.  相似文献   
5.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
6.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
7.
Global climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air‐sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients ‐ phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change.  相似文献   
8.
We investigated the protective role of fish oil (FO-source of n-3 FA) enriched diet (in the first protocol) in 20 rats and FO administration intrarectally (in the second protocol) in 40 rats with trinitrobenzene (TNB) colitis. All colonic specimens were pathologically evaluated, myeloperoxidase enzyme activities were measured, leukotriene B4 (LTB4) and LTC4 levels were determined by radioimmunoassay. In the first protocol 10 rats (group A1) were fed with 8% sunflower and cotton oil enriched diet and (group A2) with 8% FO enriched diet for 6 weeks. At the end of this period, TNB (30 mg in 0.25 ml of 30% ethanol) were intrarectally administered. After 2 weeks, rats were sacrificed. MPO activities (2.47 versus 30.17), LTB4 (34.5 versus 903.3) and LTC4 (77.7 versus 456.0) levels were significantly reduced in group A2 compared with group A1 (P<0.005). There was also a significant difference in pathologic scores (1.55 versus 2.12, P<0.002) between two groups. In the first part of the second protocol, 20 male rats were randomized into two equal groups (B1 and B2) and TNB colitis was induced. After 1 day, 1 ml of saline (group B1) or n-3 FA enemas (group B2) were administered every day for 2 weeks. At the end of this period, rats were sacrificed and evaluated as done for previous groups. Although there was no significant difference between the two groups in comparison with MPO enzyme activities and pathologic scores, the LTB4 (130.1 versus 971.0) and LTC4 (126.0 versus 532.0) levels of FO group were significantly reduced (P<0.005). In the second part of the second protocol, 20 male rats were randomized into two groups. One millilitre of saline (group B3) or FO enemas (group B4) were administered to rats every day for 3 days. At the fourth day, TNB-colitis was induced and after 24 h rats were sacrificed. We could not find any significant difference in MPO activities, pathologic scores, LTB4 and LTC4 levels between groups B3 and B4. In conclusion, FO enriched diet decreased both pathologic damage and tissue LT levels. The second protocol of our study revealed that the long-term FO enemas decreased the LTB4 and LTC4 levels; however, did not have any beneficial effect on the tissue lesions. Short periods of FO enemas did not have a protective role in the occurrence of experimental colitis. The present study showed that FO enemas significantly decreased LT levels. The protective effect of FO (oral and enema) in TNB colitis may open a new insight into the treatment of inflammatory bowel disease.  相似文献   
9.
Coker JS  Davies E 《BioTechniques》2003,35(4):740-2, 744, 746 passim
  相似文献   
10.
The aim of this study was to determine the role of glucagon in hepatic glutamine (Gln) metabolism during exercise. Sampling (artery, portal vein, and hepatic vein) and infusion (vena cava) catheters and flow probes (portal vein, hepatic artery) were implanted in anesthetized dogs. At least 16 days after surgery, an experiment, consisting of a 120-min equilibration period, a 30-min basal sampling period, and a 150-min exercise period, was performed in these animals. [5-(15)N]Gln was infused throughout experiments to measure gut and liver Gln kinetics and the incorporation of Gln amide nitrogen into urea. Somatostatin was infused throughout the study. Glucagon was infused at a basal rate until the beginning of exercise, when the rate was either 1) gradually increased to simulate the glucagon response to exercise (n = 5) or 2) unchanged to maintain basal glucagon (n = 5). Insulin was infused during the equilibration and basal periods at rates designed to achieve stable euglycemia. The insulin infusion was reduced in both protocols to simulate the exercise-induced insulin decrement. These studies show that the exercise-induced increase in glucagon is 1) essential for the increase in hepatic Gln uptake and fractional extraction, 2) required for the full increment in ureagenesis, 3) required for the specific transfer of the Gln amide nitrogen to urea, and 4) unrelated to the increase in gut fractional Gln extraction. These data show, by use of the physiological perturbation of exercise, that glucagon is a physiological regulator of hepatic Gln metabolism in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号