首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   5篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有36条查询结果,搜索用时 468 毫秒
1.
Growth factors such as platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF-1) stimulate proliferation and migration of vascular smooth muscle cells (SMC). IGF-l bioactivity is modulated by high-affinity binding proteins (IGFBP) which are important regulators of these processes. Procine vascular SMC synthesize IGFBP-2 and IGFBP-4 in vitro. In the present study, levels of IGFBP-2 in conditioned media (CM) were increased approximately 1.6 to 2.2-fold when cells were exposed to PDGF (20 ng.ml) or insulin (5 μg/ml) for 24 hr following a 24 hr incubation in serum-free media, or following a 72 hr exposure to either growth factor. Similar increases in IGFBP-2 mRNA levels were observed. Exposure of cells to PDGF for 24 hr without prior serum deprivation resulted in smaller (47 ± 11%) increases in IGFBP-2 protein levels but failed to alter mRNA levels. IGF-1, FGF-b? and EGF failed to increase IGFBP-2 using either experimental paradigm. In contrast, IGFBP-2 protein levels were consistently decreased (75 ± 14%) after 72 hr of exposure to IGF-II without corresponding decreases in IGFBP-2 mRNA levels. Immunoprecipitation of [35S] methionine-labeled IGFBP-2 indicated that this decrease was not due to a decrease in synthesis of IGFBP-2. Immunoblot analysis of CM from cells treated with IGF-II indicated that the decrease in intact protein corresponded with an increase in two non-IGF binding IGFBP-2 fragments of 22 and 14 kD. Increased abundance of these fragements was also observed following IGF-I exposure, although corresponding decreases in intact IGFBP-2 were not usually observed. The relative abundance of these fragments did not appear to be affected by treatment with PDGF or insulin. In contrast to IGFBP-2, regulation of the levels of IGFBP-4 in CM did not appear to be altered by serum deprivation. Insulin consistently increased IGFBP-4 mRNA and protein levels under all situations. PDGF tended to increase IGFBP-4 protein levels, although this effect was less consistent and not as great as the increase observe with insulin. Treatment with IGF-I or -ll consistently decreased IGFBP-4 levels in CM but tended to increase their mRNA levels under all situations. These data indicate that insulin, PDGF, and the IGFs regulate both IGFBP-2 and IGFBP-4. While PDGF and insulin stimulate IGFBP-2 and 4 synthesis, the IGFs appear to activate protease(s) which regulate IGFBP-2 and -4 levels post-translationally. The regulation of IGFBP-2 levels by each of these mechanisms appears to be amplified by serum deprivation, but this is not observed with IGFBP-4. © 1995 Wiley-Liss, Inc.  相似文献   
2.
Previous studies on flagellar adhesion in chlamydomonas (Snell, W. and S. Roseman. 1979. J. Biol. Chem. 254:10820-10829.) have shown that as gametes adhere to flagella isolated from gametes of the opposite mating type, the adhsiveness of the added flagella but not of the gametes is lost. The studies reported here show that the addition of protein synthesis inhibitors (cycloheximide [CH] or anisomycin) to the medium of such cell- flagella mixtures causes the cells to lose their adhesiveness. This loss, however, occurs only after the cells have interacted with 4-8 flagella/cell and does not occur if the cells are kept in CH (7 h) without aggregating. The availability of an impotent (imp) mating type plus (MT(+)) mutant (provided by U.W. Goodenough), which adheres but is unable to undergo the fusion that normally follows adhesion, made it possible to determine whether a similar loss of adhesiveness occurs in mixtures of matting type minus (mt(-)) and imp mt(+) gametes. In the absence of inhibitor, mt(-) and imp mt(+) gametes adhered to each other (without fusing) for several hours; however, in the presence of CH or anisomycin, the gametes began to de-adhere 35 min after mixing, and, by 90 min, 100 percent of the cells were single again. This effect was reversible, and the rapid turnover of cells were single again. This effect was reversible, and the rapid turnover of molecules involved in adhesion occurred only during adhesion inasmuch as gametes pretreated for 4 h with CH were able to aggregate in CH for the same length of time as nonpretreated cells aggregated in CH. By the addition of CH at various times after the mt(-) and imp mt(+) gametes were mixed, measurements were made of the “pool size” of the molecules involved in adhesion. The pool reached a minimum after 25 min of aggregation, rapidly increased for the next 25 min, and then leveled off at the premixing level. These results suggest that flagellar adhesion in chlamydomonas causes modification of surface molecules (receptors, ligands), which brings about their inactivation and stimulates their replacement.  相似文献   
3.

Background

Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive.

Results

Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim.

Conclusion

This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs affecting the translocation process.  相似文献   
4.
The A chain of the plant toxin ricin (RTA) is an N-glycosidase that inhibits protein synthesis by removing a specific adenine from the 28S rRNA. RTA also induces ribotoxic stress, which activates stress-induced cell signaling cascades and apoptosis. However, the mechanistic relationship between depurination, protein synthesis inhibition and apoptosis remains an open question. We previously identified two RTA mutants that suggested partial independence of these processes in a yeast model. The goals of this study were to establish an endogenous RTA expression system in mammalian cells and utilize RTA mutants to examine the relationship between depurination, protein synthesis inhibition, cell signaling and apoptosis in mammalian cells. The non-transformed epithelial cell line MAC-T was transiently transfected with plasmid vectors encoding precursor (pre) or mature forms of wild-type (WT) RTA or mutants. PreRTA was glycosylated indicating that the native signal peptide targeted RTA to the ER in mammalian cells. Mature RTA was not glycosylated and thus served as a control to detect changes in catalytic activity. Both pre- and mature WT RTA induced ribosome depurination, protein synthesis inhibition, activation of cell signaling and apoptosis. Analysis of RTA mutants showed for the first time that depurination can be reduced by 40% in mammalian cells with minimal effects on inhibition of protein synthesis, activation of cell signaling and apoptosis. We further show that protein synthesis inhibition by RTA correlates more linearly with apoptosis than ribosome depurination.  相似文献   
5.

Background  

The pathogenetic mechanisms that underlie the interstitial lung disease cryptogenic fibrosing alveolitis (CFA) may involve an immunological reaction to unidentified antigens in the lung, resulting in tissue damage.  相似文献   
6.
Ricin is a toxin isolated from castor beans that has potential as a weapon of bioterrorism. This glycoprotein consists of an A-chain (RTA) that damages the ribosome and inhibits protein synthesis and a B-chain that plays a role in cellular uptake. Ricin activates the c-Jun N-terminal kinase (JNK) and p38 signaling pathways; however, a role for these pathways in ricin-induced cell death has not been investigated. Our goals were to determine if RTA alone could activate apoptosis and if the JNK and p38 pathways were required for this response. Comparable caspase activation was observed with both ricin and RTA treatment in the immortalized, nontransformed epithelial cell line, MAC-T. Ribosome depurination and inhibition of protein synthesis were induced in 2–4 h with 1 μg/ml RTA and within 4–6 h with 0.1 μg/ml RTA. Apoptosis was not observed until 4 h of treatment with either RTA concentration. RTA activated JNK and p38 in a time- and concentration-dependent manner that preceded increases in apoptosis. Inhibition of the JNK pathway reduced RTA-induced caspase activation and poly(ADP-ribose) polymerase cleavage. In contrast, inhibition of the p38 pathway had little effect on RTA-induced caspase 3/7 activation. These studies are the first to demonstrate a role for the JNK signaling pathway in ricin-induced cell death. In addition, the MAC-T cell line is shown to be a sensitive in vitro model system for future studies using RTA mutants to determine relationships between RTA-induced depurination, ribotoxic stress, and apoptosis in normal epithelial cells.  相似文献   
7.
DNA sequence comparisons of two mitochondrial DNA genes were used to infer phylogenetic relationships among 17 Felidae species, notably 15 in the previously described pantherine lineage. The polymerase chain reaction (PCR) was used to generate sequences of 358 base pairs of the mitochondrial 12S RNA gene and 289 base pairs of the cytochrome b protein coding gene. DNA sequences were compared within and between 17 felid and five nonfelid carnivore species. Evolutionary trees were constructed using phenetic, cladistic, and maximum likelihood algorithms. The combined results suggested several phylogenetic relationships including (1) the recognition of a recently evolved monophyletic genus Panthera consisting of Panthera leo, P. pardus, P. onca, P. uncia, P. tigris, and Neofelis nebulosa; (2) the recent common ancestry of Acinonyx jubatus, the African cheetah, and Puma concolor, the American puma; and (3) two golden cat species, Profelis temmincki and Profelis aurata, are not sister species, and the latter is strongly associated with Caracal caracal. These data add to the growing database of vertebrate mtDNA sequences and, given the relatively recent divergence among the felids represented here (1-10 Myr), allow 12S and cytochrome b sequence evolution to be addressed over a time scale different from those addressed in most work on vertebrate mtDNA.   相似文献   
8.
The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.  相似文献   
9.
TNF‐α and IGF‐I exert opposing effects on mammary epithelial cell (MEC) growth and survival. However, both increase IGF binding protein‐3 (IGFBP‐3) expression, a multifunctional protein that plays both IGF‐dependent as well as independent roles in these processes. We have reported that IGF‐I utilizes the PI3‐K and MAPK pathways to induce IGFBP‐3 expression in bovine MEC. Here we show that TNF‐α requires the SAPK pathway p38, but not JNK, to induce IGFBP‐3 expression. Contrary to reports in cancer cell lines, TNF‐α retained its ability to decrease DNA synthesis in cells transfected with IGFBP‐3 siRNA. It also retained its ability to inhibit IGF‐I‐stimulated DNA synthesis in these cells. In contrast, the ability of IGF‐I to increase DNA synthesis was attenuated with IGFBP‐3 knockdown. IGFBP‐3 knockdown also decreased basal DNA synthesis, indicating that a certain level of IGFBP‐3 may be required for cell proliferation. While TNF‐α alone failed to induce apoptosis, it increased cell death when added with the JNK agonist anisomycin (ANS). TNF‐α and ANS were unable to induce apoptosis when either IGFBP‐3 or JNK‐2 was knocked‐down, suggesting that both JNK and IGFBP‐3 may interact with a downstream molecule central to apoptosis. There are reports that IGFBP‐3 promotes either cell proliferation or apoptosis in different cell systems. However, this is the first report that endogenous IGFBP‐3 is required for the action of both stimulatory and inhibitory factors within the same cell line. Therefore, the actions of IGFBP‐3 are not pre‐determined, but instead governed by cellular context such as JNK activation. J. Cell. Physiol. 220: 182–188, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
10.
Odor identification: perceptual and semantic dimensions   总被引:8,自引:8,他引:0  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号