首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   11篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1976年   10篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1966年   3篇
  1965年   1篇
  1931年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
Considerable evidence indicates that cross-linking of B cell surface Ig results in a "first signal" in B cell activation. We have shown that transduction of this signal is manifest by changes in plasma membrane potential leading to increased expression of surface I-A antigen. In previous studies, we have provided evidence that suggests that this signal is transduced via phosphatidylinositol (PI) hydrolysis liberating diacylglycerol (DAG), which subsequently activates protein kinase C. These biochemical events are aspects of a transmembrane signal transduction mechanism that is common in nature and utilizes the PI metabolic cycle for generation of "second messenger" diacylglycerol. Here we report direct evidence that treatment of B cells with various antibodies to surface Ig results in activation of the PI cycle. Results suggest that the increased phospholipid metabolism that occurs in B cells in response to anti-Ig involves only those phospholipids in the PI cycle and is a consequence of turnover of existing lipid rather than de novo synthesis. Furthermore, we show that PI cycle activation requires cross-linking of membrane Ig and is inhibitable by increased intracellular cyclic AMP. These findings are particularly important in view of previous studies that have shown identical requirements for and inhibitability of induction of B cell membrane depolarization and increased I-A expression. Thus, these results are consistent with our previous hypothesis that early B cell activation events initiated by receptor Ig occupancy are mediated via PI hydrolysis, diacylglycerol generation, and protein kinase C activation.  相似文献   
2.
We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation.  相似文献   
3.
Larger axons usually have faster conduction velocities, lower thresholds, and larger extracellular action potentials than smaller axons. However, it has been shown that the largest fiber, R2, in the right pleurovisceral connective of the marine mollusc, Aplysia, has a higher threshold and a slower conduction velocity than does the smaller axon of cell RI, even though the amplitude of R2's spike is larger than R1's spike. One explanation of this apparent parodox is that the two axons have different "intrinsic membrane and axoplasmic constants" (Goldman, L. (1961), J. Cell Comp. Physiol. 57: 185-191). However, the deep infolding of R2's axonal membrane suggested that differences in the shape of the two axons might also account for the paradox. Accordingly, we measured the conduction velocities of the two axons and then examined the same axons in the electron microscope in order to measure their volumes and surface areas. Our morphological observations indicate that the extensive infolding of surface membrane causes R2 to have a smaller volume to surface area ratio than R1. Thus, since conduction velocity is proportional to the square root of the volume to surface area ratio (Hodgkin, A.L. (1954), J. Physiol. 125: 221-224), it is predictable that the smaller axon would have a faster conduction velocity. The results suggest that the paradoxical conduction velocities can be explained largely as resulting from differences in the shapes of the two axons. However, certain discrepancies between the measured and the predicted values suggest that other factors are contributing as well.  相似文献   
4.
—Previous workers have reported that the colossal cells of Retzius in the segmental ganglia of the medicinal leech contain about 2.3 pmol of 5-hydroxytryptamme (5-HT)/cell body. We verify the identify of 5-HT in the Retzius cells by gas chromatography-mass spectrometry and derive concentrations of 1.3–4.1 pmol/neuron by analyses of eight individually dissected Retzius cell bodies. The Retzius cell bodies contain about 30% of the 5-HT in each ganglion. An average of 25 pmol 5-HT/mg tissue, a concentration about 500 times lower than that in the Retzius cell, was found in the fibrous, pigmented tissue surrounding the leech nervous system. We could not detect γ-aminobutyric acid, octopamine, dopamine or norepinephrine in the Retzius cells, in the pigmented tissue, or, with the possible exception of dopamine (±0.4 pmol/ganglion), in whole ganglia. Furthermore, we could not detect 5-HT in pooled samples of 100 non-chromaffin control neurons.  相似文献   
5.
Five-hydroxy tryptamine (5-HT) causes a hyperpolarization and increased conductance of the leech body wall muscle cell membrane. If 5-HT is applied in the absence of the Cl?ion, the response appears as a depolarization, whereas if 5-HT is applied in the absence of the K+ion, the response is a hyperpolarization. In both cases, the conductance of the muscle cell membrane is increased. Stimulation of the peripheral nerve to the body wall muscle produces a complex junctional potential in muscle cells. Exposing the muscle to d-tubocurarine (d-TC) eliminates the excitatory component (EJP) of the complex potential. The inhibitory potential (IJP) that remains has an equilibrium potential at approximately 65 m V. Furthermore, this IJP appears as a depolarization when the nerve is stimulated in the presence of d-TC and low CL?, whereas this is not the case if the nerve is stimulated in the presence of d-TC and low K+. The drugs BOL-148 and cyproheptadine block the IJP's in the body wall muscle. These data are interpreted as indicating that 5'HT acts on leech body wall muscle cells by increasing the conductance to the Cl?ion and that the IJP's caused by nerve stimulation are probably the result of 5-HT release at nerve terminals. As a final point, it has been shown that the inhibition by 5-HT of the spontaneous EJP's that occur on the leech body wall muscle results from an inhibition of central neurons and not from any direct effect on the muscle cell or on peripheral synapses.  相似文献   
6.
Gram-positive bacteria are an important public health problem, but it is unclear how they cause systemic inflammation in sepsis. Our previous work showed that peptidoglycan (PGN) induced proinflammatory cytokines in human cells by binding to an unknown extracellular receptor, followed by phagocytosis leading to the generation of NOD ligands. In this study, we used flow cytometry to identify host factors that supported PGN binding to immune cells. PGN binding required plasma, and plasma from all tested healthy donors contained IgG recognizing PGN. Plasma depleted of IgG or of anti-PGN Abs did not support PGN binding or PGN-triggered cytokine production. Adding back intact but not F(ab')(2) IgG restored binding and cytokine production. Transfection of HEK293 cells with FcγRIIA enabled PGN binding and phagocytosis. These data establish a key role for anti-PGN IgG and FcγRs in supporting inflammation to a major structural element of Gram-positive bacteria and suggest that anti-PGN IgG contributes to human pathology in Gram-positive sepsis.  相似文献   
7.
Classical studies of the nervous system of the leech revealed that there were specific types of very large glial cells associated with various parts of the neuron. Recent microelectrode studies demonstrated that there was a low resistance to the flow charge from any one of these large glial cells to another. The present study describes a previously unreported type of glial cell, the glial cell of the fascicles. These cells, which resemble the glial cells of the connectives but are smaller, are found in the fascicles of axons that unite the connectives to the neuropil. Thus, these cells are located between the glial cells of the connectives on the one hand and the glial cells of the neuropil and packets on the other and must be taken into account in considerations of the low resistance to the transfer of charge from one glial cell to another.  相似文献   
8.
9.
DNA was cytophotometrically measured in Feulgen stained nuclei of R-2, the giant neuron of the abdominal ganglion in Aplysia. The data indicate that the nucleus hag a volume of more than 7 X 106 μ3 in large animals, and contains as much as 75000 times the haploid amount of DNA. To our knowledge, this is the most highly polyploid nucleus yet described. Furthermore, the amount of DNA increases with growth, going from approximately 2000 times the haploid amount in small animals to over 75000 times in large animals. The data suggest that the increase in DNA occurs in increments, each increment having approximately twice the DNA as the one before. Thus we suggest that the increase in DNA in the nucleus of R-2 results from the entire genome replicating without accompanying cell division.  相似文献   
10.
Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号