首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   9篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
2.
3.
4.
5.
Genomics and proteomics discovery is leading to the identification of all proteins and to the opportunity, and challenge, to reveal the protein recognition networks that drive virtually all biological processes. Over the past decade, biosensors have emerged as a key technology for detection and analysis of biomolecular interactions. An important limitation in developing such biosensors is that the focus has been mainly on sensor platforms, the transducing hardware that converts interaction signals into recorded data, without adequately considering the role of molecular interfaces, the elements of sensors that interact with analytes to produce signals. We have investigated this alternative focus by identifying and, where necessary, designing molecular interfaces that will more effectively drive new biosensor development and utilization in biomedical and biotechnological investigations. Here we describe our recent studies of coiled coil and lipid bilayer interfaces and the potential to use these to expand sensing technologies for multiplexed target detection and analysis in increasingly biologically relevant membrane like environments.  相似文献   
6.
7.
8.
The first, critical stage of HIV-1 infection is fusion of viral and host cellular membranes initiated by a viral envelope glycoprotein gp120. We evaluated the potential to form a chimeric protein entry inhibitor that combines the action of two gp120-targeting molecules, an allosteric peptide inhibitor 12p1 and a higher affinity carbohydrate-binding protein cyanovirin (CVN). In initial mixing experiments, we demonstrated that the inhibitors do not interfere with each other and instead show functional synergy in inhibiting viral cell infection. Based on this, we created a chimera, termed L5, with 12p1 fused to the C-terminal domain of CVN through a linker of five penta-peptide repeats. L5 revealed the same broad specificity as CVN for gp120 from a variety of clades and tropisms. By comparison to CVN, the L5 chimera exhibited substantially increased inhibition of gp120 binding to receptor CD4, coreceptor surrogate mAb 17b and gp120 antibody F105. These binding inhibition effects by the chimera reflected both the high affinity of the CVN domain and the allosteric action of the 12p1 domain. The results open up the possibility to form high potency chimeras, as well as noncovalent mixtures, as leads for HIV-1 envelope antagonism that can overcome potency limits and potential virus mutational resistance for either 12p1 or CVN alone.  相似文献   
9.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号