首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2015年   6篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有63条查询结果,搜索用时 937 毫秒
1.
The chemical composition of surface waters of two Dutch moorland pools and of incident precipitation, was monitored from 1982 to 1990. For this period, sulfur and water budgets were calculated using a hydrochemical model developed for well-mixed non-stratifying lakes. Total atmospheric deposition of S decreased significantly after 1986 at both locations. A model describing the sulfur budget in terms of input, output and reduction/oxidation processes predicted a fast decrease of pool water SO4 2− concentrations after a decrease of atmospheric input. However, SO4 2− concentrations in the surface water was lowered only slightly or remained constant. Apparently a source within the lake caused the unexpectedly high SO4 2− concentrations. The possible supply of SO4 2− from the sediment through regulation by (K-)Al-SO4 containing minerals or desorption of SO4 2− from positively charged surfaces in the sediment was evaluated. Solubility calculations of pore water with respect to alunite, basaluminite and jurbanite indicated that SO4 2− concentration was not regulated by these minerals. It is suggested here (1) that desorption of SO4 2− from peaty sediments may account for the estimated SO4 2− supply provided that the adsorption complex is periodically recharged by partial oxidation of the upper bottom sediments and (2) that because of exposure of a part of the pool bottom to the atmosphere during dry summers and subsequent oxidation of reduced S, the amount of SO4 2− may be provided which complements the decreasing depositional SO4 2− input. In future research these two mechanisms need to be investigated.  相似文献   
2.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
3.
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form.  相似文献   
4.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
5.
6.
While there is currently intense effort to examine the 13C signal of CO2 evolved in the dark, less is known on the isotope composition of day‐respired CO2. This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure ci/ca effect) from respiratory effect (production of CO2 with a different δ13C value from that of net‐fixed CO2) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO2]. We show that whole mesocosm‐respired CO2 is slightly 13C depleted in the light at the mesocosm level (by 0.2–0.8‰), while it is slightly 13C enriched in darkness (by 1.5–3.2‰). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the 13C abundance in day‐ and night‐evolved CO2. We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO2 production may change, thereby explaining the different 12C/13C respiratory fractionations in the light and in the dark.  相似文献   
7.
8.
The development of HIV drugs is an expensive and a lengthy process. In this study, we used drug repositioning, a process whereby a drug approved to treat one condition is used to treat a different condition, to identify clinically approved drugs that have anti-HIV activity. The data presented here show that a combination of two clinically approved drugs, decitabine and gemcitabine, reduced HIV infectivity by 73% at concentrations that had minimal antiviral activity when used individually. Decreased infectivity coincided with a significant increase in mutation frequency and a shift in the HIV mutation spectrum. These results indicate that an increased mutational load is the primary antiviral mechanism for inhibiting the generation of infectious progeny virus from provirus. Similar results were seen when decitabine was used in combination with another ribonucleotide reductase inhibitor. Our results suggest that HIV infectivity can be decreased by combining a nucleoside analog that forms noncanonical base pairs with certain ribonucleotide reductase inhibitors. Such drug combinations are relevant since members of these drug classes are used clinically. Our observations support a model in which increased mutation frequency decreases infectivity through lethal mutagenesis.There are more than 20 drugs approved for the treatment of HIV infection. However, the efficacy of these drugs is limited by drug resistance, which emerges when drug levels are not high enough to sufficiently inhibit viral replication. While there are currently five classes of HIV therapy, a mutation that confers resistance to one drug often confers resistance to other members of the same drug class. Thus, the emergence of drug resistance limits potential drug therapies, making new anti-HIV therapies essential for successful long-term treatment of HIV infection. However, the development of novel anti-HIV drugs is costly (∼$600 million) and time-consuming (over 12 years) (12). One way to decrease the cost and expedite the development of novel drugs is to use a drug repositioning strategy which involves using drugs that are clinically approved for one condition to treat a different condition (1). Drug repositioning expedites drug development by making use of drugs whose toxicity and pharmacokinetic profiles have already been thoroughly characterized. Such a strategy has been successfully used for the treatment of conditions such as cancer, obesity, and osteoporosis, as well as others (1). For example, zidovudine (AZT), which is clinically approved for the treatment of HIV infection, was originally developed as an anticancer drug (20, 24). Thus, to expedite the development of novel anti-HIV drugs, we examined clinically approved drugs for the ability to inhibit HIV infectivity.We focused on clinically approved antimetabolites (Table (Table1)1) for two reasons. First, none of the current anti-HIV drugs are antimetabolites. Therefore, any compounds identified as having anti-HIV activity would likely offer a new mechanism of action. Second, antimetabolites have been shown to have activity against a wide variety of viruses, such as poliovirus and foot-and-mouth disease virus (FMDV) (34, 35, 37). This antiviral activity is likely attributable to either a reduction in viral replication or an increase in the viral mutation rate. The ability of antimetabolites to reduce replication is likely due to a reduction in deoxynucleoside triphosphate (dNTP) pools, which are required for viral replication (2, 3, 10, 28). Alternatively, alterations of dNTP pools by antimetabolites have been shown to increase the HIV mutation rate, which correlates with a loss of infectivity. This loss of infectivity has been attributed to the process of lethal mutagenesis, a term used to describe the idea that the mutation rate can surpass a threshold beyond which the virus is unable to replicate its genome with enough fidelity to remain infectious. Although an inverse correlation between mutation frequency and infectivity has been shown for a number of viruses, there are few, if any, drugs used clinically that specifically target viral mutation rates.

TABLE 1.

Compounds screened for anti-HIV activitya
Open in a separate window
Open in a separate windowaAll compounds were screened for anti-HIV activity alone or in combination with decitabine using the single-cycle HIV assay shown in Fig. Fig.11.In this study, we describe the identification of a novel combination therapy for HIV infection composed of two nucleoside analogs that are clinically approved for the treatment of precancerous or cancerous states. The two drugs, decitabine and gemcitabine, significantly decrease HIV infectivity when used individually. However, when used in combination, the drugs worked synergistically to decrease or eliminate HIV infectivity without any detectable effect on cell proliferation. Similar results were seen when decitabine was used in combination with another ribonucleotide reductase inhibitor, hydroxyurea. We provide data that suggest that the combination therapy targets the mutation rate of HIV, a drug target that has yet to be exploited clinically. Importantly, these results reveal a novel therapeutic strategy to inhibit HIV replication. Specifically, we show here that HIV infectivity can be synergistically decreased by combining two classes of compounds, (i) nucleoside analogs that form noncanonical base pairs and (ii) certain ribonucleotide reductase inhibitors. Furthermore, since many of the drugs from each of these drug classes are already clinically approved, it is likely that such a drug combination is clinically relevant to the treatment of HIV infection.  相似文献   
9.
10.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号