首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   9篇
  109篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   11篇
  2011年   11篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   2篇
  1976年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有109条查询结果,搜索用时 0 毫秒
1.
2.
Saturn-spored species assigned to the generaWilliopsis andPichia were compared from extent of nuclear DNA complementarity. Of thePichia spp., four were recognized as distinct taxa:P. dispora, P. saitoi, P. zaruensis andPichia sp. nov. AmongWilliopsis spp., the following were accepted:W. californica, W. mucosa comb. nov.,W. pratensis, W. saturnus var.saturnus, W. saturnus var.mrakii comb. nov.,W. saturnus var.sargentensis comb. nov.,W. saturnus var.subsufficiens comb. nov. andWilliopsis sp. nov. The newPichia andWilliopsis species are described elsewhere. Moderate (36–68%) DNA relatedness was detected between the formerPichia sargentensis and varieties ofW. saturnus again demonstrating that nitrate assimilation is not a reliable criterion for separating yeast species.  相似文献   
3.
The phylogenetic relatedness of Issatchenkia spp. was estimated from partial rRNA sequences in two regions of the large subunit and one region of the small subunit. I. terricola was the most divergent species of the genus, differing from other members by 18% nucleotide differences in the highly variable 25S-635 region. These data indicate Issatchenkia to be the most divergent ascomycetous yeast genus presently known.  相似文献   
4.
Two new species of the methanol assimilating ascosporic yeast genus Komagataella are described. Komagataella populi sp. nov. (NRRL YB-455, CBS 12362, type strain, MycoBank accession number = 564110) was isolated from an exudate on a cottonwood tree (Populus deltoides), Peoria, Illinois, USA, and Komagataella ulmi sp. nov. (NRRL YB-407, CBS 12361, type strain, MycoBank accession number = 564111) was isolated from the exudate on an elm tree (Ulmus americana), also growing in Peoria, Illinois. The species were resolved from divergence in gene sequences for domains D1/D2 LSU rRNA, ITS1-5.8S-ITS2, mitochondrial small subunit rRNA, RNA polymerase subunit 1 and translation elongation factor-1α. Species of Komagataella assimilate few carbon compounds and are unlikely to be resolved from differences in standard growth and fermentation tests. For this reason, separation of species is dependent on gene sequence analysis.  相似文献   
5.
Of 10 Penicillium species reported to cause blue-eye disease of corn, four (P. martensii, P. palitans, P. cyclopium, P. puberulum) were found capable of producing the mycotoxin penicillic acid on various agricultural commodities. Commodities with high protein contents did not support toxin synthesis. The extent of toxin production varied with the strain of mold, the commodity, and the temperature; low temperatures (1 to 10 C) favored toxin accumulation.  相似文献   
6.
Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis NRRL Y-7124 were subjected to UV-C (234 nm) irradiation targeted at approximately 40% cell survival. When surviving cells were selected in sufficient numbers via automated plating strategies and cultured anaerobically on xylose medium for 5 months at 28°C, five novel mutagenized S. stipitis strains were obtained. Variable number tandem repeat analysis revealed that mutations had occurred in the genome, which may have produced genes that allowed the anaerobic utilization of xylose. The mutagenized strains were capable of growing anaerobically on xylose/glucose substrate with higher ethanol production during 250- to 500-h growth than a Saccharomyces cerevisiae yeast strain that is the standard for industrial fuel ethanol production. The S. stipitis strains resulting from this intense multigene mutagenesis strategy have potential application in industrial fuel ethanol production from lignocellulosic hydrolysates.  相似文献   
7.
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.  相似文献   
8.

Mild steel (MS), stainless steel (SS) and copper (Cu) test panels were immersed in the surface water of Dona Paula Bay over a period of 15 d. During the immersion period data on the hydrography, nutrients and suspended matter were also collected. The suspended matter and fouling products on the MS, SS and Cu panels were analysed for organic carbon (OC), organic nitrogen (ON), chlorophyll a (chl a), protein and carbohydrate concentration and composition, and the dry weight (DW) was recorded. Compared to suspended matter, the chemical and biochemical components of the fouling products showed strong temporal and substratum related differences. The microfouling biomass (as DW, OC, ON, chl a and protein) on all the test panels generally increased over the period of immersion. Carbohydrates were more abundant in the suspended matter whereas fouling products were enriched in proteins. The contribution of protein-carbon to the total carbon increased over the period of immersion for the microfouling products on MS and SS whilst it did not show a consistent trend on Cu. Whereas, the carbohydrate-carbon contribution to the total carbon increased for the fouling products on MS, it did not exhibit a particular pattern on SS or Cu over the period of immersion. Capillary gas chromatographic analysis showed the presence of glucose, galactose, mannose, arabinose, xylose, fucose and ribose in both the fouling products and suspended matter. However, there were differences in the relative distribution of these monosaccharides in the suspended matter and the fouling products. Glucose was the most abundant monosaccharide, which showed strong temporal variations in suspended matter. In contrast, the wt % concentrations of individual monosaccharides showed large temporal differences for the fouling products, which were strongly influenced by the period of immersion and the type of test substratum. Glucose and fucose were relatively more abundant in the fouling products on SS and Cu, whilst glucose was the most abundant monosaccharide on MS. The monosaccharide and chemical composition data suggest strong temporal changes in the composition of the fouling products.  相似文献   
9.
Five N10-substituted phenoxazines having different R groups and -Cl substitution at C-2 were found to bind to calf -thymus DNA and plasmid DNA with high affinity as seen from by UV and CD spectroscopy. The effect of phenoxazines on DNA were studied using DNA-ethidium bromide complexes. Upon addition of phenoxazines, the ethidium bromide dissociated from the complex with DNA. The binding of phenoxazines to plasmid PUC18 reduced ethidium bromide binding as seen from the agarose gel electrophoresis. Butyl, and propyl substituted phenoxazines were able to release more ethidium bromide compared with that of acetyl substitution. Addition of phenoxazines also enhanced melting temperature of DNA.  相似文献   
10.
To gain insight into the role of the strictly conserved histidine residue, H178, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H178A mutant enzyme was prepared. Metal-reconstituted H178A binds only one equivalent of Co(II) or Fe(II) tightly with affinities that are identical to the WT enzyme based on kinetic and isothermal titration calorimetry (ITC) data. Electronic absorption spectra of Co(II)-loaded H178A EcMetAP-I indicate that the active site divalent metal ion is pentacoordinate, identical to the WT enzyme. These data indicate that the metal binding site has not been affected by altering H178. The effect of altering H178 on activity is, in general, due to a decrease in k(cat). The k(cat) value for Co(II)-loaded H178A decreased 70-fold toward MGMM and 290-fold toward MP-p-NA compared to the WT enzyme, while k(cat) decreased 50-fold toward MGMM for the Fe(II)-loaded H178A enzyme and 140-fold toward MP-p-NA. The K(m) values for MGMM remained unaffected, while those for MP-p-NA increased approximately 2-fold for Co(II)- and Fe(II)-loaded H178A. The k(cat)/K(m) values for both Co(II)- and Fe(II)-loaded H178A toward both substrates ranged from approximately 50- to 580-fold reduction. The pH dependence of log K(m), log k(cat), and log(k(cat)/K(m)) of both WT and H178A EcMetAP-I were also obtained and are identical, within error, for H178A and WT EcMetAP-I. Therefore, H178A is catalytically important but is not required for catalysis. Assignment of one of the observed pK(a) values at 8.1 for WT EcMetAP-I was obtained from plots of molar absorptivity at lambda(max(640)) vs pH for both WT and H178A EcMetAP-I. Apparent pK(a) values of 8.1 and 7.6 were obtained for WT and H178A EcMetAP-I, respectively, and were assigned to the deprotonation of a metal-bound water molecule. The data reported herein provide support for the key elements of the previously proposed mechanism and suggest that a similar mechanism can apply to the enzyme with a single metal in the active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号