首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.  相似文献   
2.
3.
The crucial cellular role of membrane proteins is generally known for all life forms. Depending on the species, tissue, compartment, function and physiological condition, membranes differ in their protein and lipid profiles. Additionally, occurrence of microdomains hampers quantitative protein solubilisation and therefore membrane proteomics remain a major challenge. In the present study sample preparation (TCA/acetone and methanol/chloroform precipitation with and without SDS pre-solubilisation) for two-dimensional PAGE were compared for microsomal fractions of leaves (Arabidopsis thaliana, Nicotiana tabaccum, Pisum sativum) and roots (P. sativum, Zea mays). Generally, pre-solubilisation with SDS impaired the resolution of the gels. All samples showed higher spot yields with TCA/acetone precipitation. Finally, we compared the results of conventional 2D-PAGE (IPG/SDS-PAGE) and the combination of off-gel fractionation in the first-dimension, 10% urea-SDS-PAGE in the second-dimension. Results showed that more spots are present in the alkaline pH range after off-gel fractionation then on conventional 2D-PAGE. For the first time, off-gel fractionation was combined with SDS/SDS-PAGE and BAC/SDS-PAGE to improve the resolution after off-gel fractionation. Transmembrane domains and GRAVY were calculated for all significantly identified spots resulting from the MALDI-TOF-TOF mass spectrometry showing that in the second dimension after off-gel fractionation 10.3% more transmembrane proteins were identified compared to IPG/SDS-PAGE.  相似文献   
4.
Iron is essential for all living organisms and plays a crucial role in pathogenicity. This study presents the first proteome analysis of plasma membranes isolated from pea roots. Protein profiles of four different samples (+Fe, +Fe/Chitosan, -Fe, and -Fe/Chitosan) were compared by native IEF-PAGE combined with in-gel activity stains and DIGE. Using DIGE, 89 proteins of interest were detected in plasma membrane fractions. Data revealed a differential abundance of several spots in all samples investigated. In comparison to the control and -FeCh the abundance of six protein spots increased whereas 56 spots decreased in +FeCh. Altered protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Besides stress-related proteins, transport proteins and redox enzymes were identified. Activity stains after native PAGE and spectrophotometric measurements demonstrated induction of a ferric-chelate reductase (-Fe) and a putative respiratory burst oxidase homolog (-FeCh). However, the activity of the ferric-chelate reductase decreased in -Fe plants after elicitor treatment. The activity of plasma membrane-bound class III peroxidases increased after elicitor treatment and decreased under iron-deficiency, whereas activity of quinone reductases decreased mostly after elicitor treatment. Possible functions of proteins identified and reasons for a weakened pathogen response of iron-deficient plants were discussed.  相似文献   
5.
There are no earlier reports with successful isolation of plasma membranes from lignin‐forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin‐producing tissue‐cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics‐rich tissues. Membranes were separated by aqueous polymer two‐phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H2O2 needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin‐like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity‐stained gels. Some juglone‐activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed.  相似文献   
6.
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors—BLN06, BLR38 and BLR40—were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号