首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   44篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   8篇
  2015年   12篇
  2014年   16篇
  2013年   20篇
  2012年   15篇
  2011年   26篇
  2010年   16篇
  2009年   11篇
  2008年   17篇
  2007年   21篇
  2006年   24篇
  2005年   17篇
  2004年   17篇
  2003年   17篇
  2002年   12篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   11篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
排序方式: 共有410条查询结果,搜索用时 15 毫秒
1.
Haems are the cofactors of cytochromes and important catalysts of biological electron transfer. They are composed of a planar porphyrin structure with iron coordinated at the centre. It is known from spectroscopy that ferric low-spin haem has one unpaired electron at the iron, and that this spin is paired as the haem receives an electron upon reduction (I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummins Publ. Co., Menlo Park, CA, 1986, pp. 165-170; H.M. Goff, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part I, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 237-281; G. Palmer, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part II, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 43-88). Here we show by quantum chemical calculations on a haem a model that upon reduction the spin pairing at the iron is accompanied by effective delocalisation of electrons from the iron towards the periphery of the porphyrin ring, including its substituents. The change of charge of the iron atom is only approx. 0.1 electrons, despite the unit difference in formal oxidation state. Extensive charge delocalisation on reduction is important in order for the haem to be accommodated in the low dielectric of a protein, and may have impact on the distance dependence of the rates of electron transfer. The lost individuality of the electron added to the haem on reduction is another example of the importance of quantum mechanical effects in biological systems.  相似文献   
2.
3.
Evidence for the genomic organization of human lambda light chain joining (J) region gene segments is presented. A mouse J probe was used in Southern hybridizations to localize joining region sequences in a cosmid clone containing the genomic cluster of six human lambda constant (C) region gene segments. The results of these hybridizations suggest the presence of at least one J gene segment upstream from each constant region gene segment. The DNA sequences indicate that the human JI, J2, and J3 gene segments have consensus nonamer and heptamer sequences, proposed to be involved in V-J joining, are capable of encoding the known amino acid sequences for the respective J peptides, and have a sequence which could give functional RNA splice site at the end of their coding regions. Our data show that a single functional J is located 1.3 or 1.6 kb upstream of each of the C gene segments known to encode the Mcg, Kern Oz, and KernOz+ isotypes. Therefore, the gene organization of this region of the human lambda locus is J1 CI -J2C2-J3C3. The DNA sequences ofJ 1,J 2, andJ 3 presented in this paper establish that a singleJ gene segment precedes each expressed C gene segment, and support a model for the evolution of the human JC clusters where JICI andJ2C2-J3C3. arose from different ancestral JC units.  相似文献   
4.
Water stress plating hypersensitivity of yeasts   总被引:4,自引:0,他引:4  
Saccharomyces cerevisiae, when growing exponentially in batch culture, passed through a phase in which, on average, one cell in 10(4) survived plating onto a low water activity (aw) agar medium. Stationary phase cultures were resistant as were all other species tested, with the exception of Candida krusei. In continuous culture, S. cerevisiae was more resistant at low than at high dilution rates. Plating at low aw was lethal to those cells that were not protected by an adequate content of compatible solute. In naturally resistant yeasts and in S. cerevisiae that had been exposed to an adaptation process, the compatible solute was one or more types of polyhydric alcohol. Resistance in stationary phase was attributable to a different cause.  相似文献   
5.
6.
The NADPH-protochlorophyllide oxidoreductase (pchlide reductase, EC 1.6.99.1) is the major protein in the prolamellar bodies (PLBs) of etioplasts, where it catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide during chlorophyll synthesis in higher plants. The suborganellar location in chloroplasts of light-grown plants is less clear. In vitro assays were performed to characterize the assembly process of the pchlide reductase protein in pea chloroplasts. Import reactions employing radiolabelled precursor protein of the pchlide reductase showed that the protein was efficiently imported into fully matured green chloroplasts of pea. Fractionation assays following an import reaction revealed that imported protein was targeted to the thylakoid membranes. No radiolabelled protein could be detected in the stromal or envelope compartments upon import. Assembly reactions performed in chloroplast lysates showed that maximum amount of radiolabelled protein was associated to the thylakoid membranes in a thermolysin-resistant conformation when the assays were performed in the presence of hydrolyzable ATP and NADPH, but not in the presence of NADH. Furthermore, membrane assembly was optimal at pH 7.5 and at 25°C. However, further treatment of the thylakoids with NaOH after an assembly reaction removed most of the membrane-associated protein. Assembly assays performed with the mature form of the pchlide reductase, lacking the transit peptide, showed that the pre-sequence was not required for membrane assembly. These results indicate that the pchlide reductase is a peripheral protein located on the stromal side of the membrane, and that both the precursor and the mature form of the protein can act as substrates for membrane assembly.  相似文献   
7.
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.  相似文献   
8.
Translation and messenger RNA secondary structure   总被引:1,自引:0,他引:1  
The possibility of translation being influenced by the messenger RNA secondary structure is investigated with the aid of a stochastic model. Simulations indicate that, at least for certain mRNA's, the mean ribosomal passage time decreases as the mean number of ribosomes on the messenger is increased. Furthermore, large variations in the passage times are found, in accordance with recent experimental results.  相似文献   
9.
The human lambda L chain Ig gene complex consists of multiple JC gene segments. A seventh human lambda C region gene segment, C lambda 7, was found 2.7 kb downstream of C lambda 6 in this gene complex. A J lambda gene segment, J lambda 7, was found 1.2 kb upstream of C lambda 7 and contains potentially functional nonamer and heptamer recombination sites, an RNA splice site and J coding region. C lambda 7 maintains an open reading frame and encodes a new lambda isotype. C lambda 7 encodes Kern+ and Oz- determinants, but does not encode any of the Kern+Oz- myeloma proteins published to date. Nevertheless, we present evidence that JC lambda 7 is transcribed in normal lymphocytes and is functional. In contrast, we present new data that the C lambda 6 gene segment, reported by others to encode the Kern+Oz- protein, is non-functional due to a 4-bp insertion in our cosmid clone. The 4-bp insertion was characterized further in 32 genomic DNA samples by producing a distinctive restriction fragment length and verified by the DNA sequences of the polymerase chain reaction products of two different cell lines. We discuss the possibility that the Kern+Oz- myeloma proteins do not define an isotype and are not encoded by JC lambda 7 nor other non-allelic genes, and we discuss the level of expression of JC lamba 7 as compared to that of JC lambda 2 and JC lambda 3.  相似文献   
10.
Using a combination of conventional and affinity chromatographic techniques, we have purified a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase (O-GlcNAc transferase) over 30,000-fold from rat liver cytosol. The transferase is soluble and very large, migrating with an apparent molecular weight of 340,000 on molecular sieve chromatography. Analysis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two protein species migrating at 110 (alpha subunit) and 78 (beta subunit) kDa in approximately a two-to-one ratio. Thus, the enzyme likely exists as a heterotrimer complex with two subunits of 110 kDa and one of 78 kDa (alpha 2 beta). The alpha subunit appears to contain the enzyme's active site since it is selectively radiolabeled by a specific photoaffinity probe (4-[beta-32P]thiouridine diphosphate). Photoinactivation and photolabeling of the enzyme are dependent on time and long wavelength ultraviolet light. Photolabeling of the alpha subunit is specifically blocked by UDP. The enzyme has an extremely high affinity for UDP-GlcNAc (Km = 545 nM). This unusually high affinity for the sugar nucleotide donor probably provides the enzyme an advantage over the nucleotide transporters in the endoplasmic reticulum and Golgi apparatus which compete for available cytoplasmic UDP-GlcNAc. The multimeric state and large size of the O-GlcNAc transferase imply that its activity may be highly regulated within the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号