首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   9篇
  49篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  1995年   1篇
  1994年   1篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有49条查询结果,搜索用时 0 毫秒
1.
A genomic library of Actinomyces naeslundii WVU45 DNA in Escherichia coli was screened for antigen expression with rabbit antibody against A. naeslundii fimbriae. Western blotting (immunoblotting) of one recombinant clone carrying a 13.8-kilobase-pair insert revealed a 59-kilodalton (kDa) immunoreactive protein. A protein of similar electrophoretic mobility was detected from the isolated fimbrial antigen. Expression of the 59-kDa cloned protein in E. coli was directed by a promoter from the insert. The DNA sequence of the subunit gene was determined, and an open reading frame of 1,605 nucleotides was identified which was preceded by a putative ribosome-binding site and followed by two inverted repeats of 14 and 17 nucleotides, respectively. The reading frame encoded a protein of 534 amino acids (calculated molecular weight, 57,074), and the N-terminal sequence resembled that of a signal peptide. The presence of a 32-amino-acid signal peptide was indicated by amino-terminal sequencing of the fimbriae from A. naeslundii. The sequence, as determined by Edman degradation, was identical to that deduced from the DNA sequence beginning at predicted residue 33 of the latter sequence. Moreover, the amino acid composition of the predicted mature protein was similar to that of the isolated fimbriae from A. naeslundii. Thus, the cloned gene encodes a subunit of A. naeslundii fimbriae.  相似文献   
2.
Viridans streptococci that participate in the microbial colonizationof teeth have cell wall polysaccharides composed of linear phosphodiester-linkedhexa- or heptasaccharide repeating units, each containing ahost-like disaccharide motif, either Galß1  相似文献   
3.
Each of five monoclonal antibodies (mAbs) prepared against the type 1 fimbriae of Actinomyces viscosus T14V reacted with a 54 kDa cloned protein previously identified as a fimbrial subunit. This purified protein completely inhibited the reaction of a specific anti-type-1-fimbria rabbit antibody with A. viscosus whole cells. Maximum values for the number of antibody molecules bound per bacterial cell ranged from 7 x 10(3) to 1.2 x 10(4) for the different 125I-labelled mAbs and was approximately 7 x 10(4) for 125I-labelled rabbit IgG or Fab against either type 1 fimbriae or the 54 kDa cloned protein. Although the different mAbs, either individually or as a mixture, failed to inhibit the type-1-fimbria-mediated adherence of A. viscosus T14V to saliva-treated hydroxyapatite, each rabbit antibody gave 50% inhibition of adherence when approximately 5 x 10(4) molecules of IgG were bound per cell. However, binding of each corresponding rabbit Fab had no significant effect on bacterial attachment unless much higher concentrations were used. These findings suggest that antibodies directed solely against the 54 kDa fimbrial subunit do not react with the putative receptor binding sites of A. viscosus T14V type 1 fimbriae. Instead, inhibition of attachment by the polyclonal antibodies may depend on an indirect effect of antibody binding that prevents the fimbria-receptor interaction.  相似文献   
4.
A cell-associated lectin activity that mediates lactose-inhibitable adherence of Actinomyces viscosus T14V has been localized to a specific population of fimbriae by the use of monoclonal antibodies. Nine monoclonal antibodies were produced that reacted with only 1 of 2 immunoelectrophoretically distinct fimbrial components on T14V. The fibrillar morphology of this component was revealed by the immunoelectronmicroscopic examination of bacteria incubated with the monoclonal antibodies. The lectin activity associated with these structures was detected when isolated fimbriae were cross-linked with monoclonal antibodies to form immune complexes with agglutination activity for neuraminidase-treated human erythrocytes, a reaction that was inhibited by lactose. Although the 9 monoclonal antibodies differed in their fine specificities, they reacted only with strains of A. viscosus and A. naeslundii that exhibited lactose-inhibitable adherence. These findings indicate that the lectin activity common to these bacteria resides on fimbriae that are antigenically related to those of T14V.  相似文献   
5.
Effects of cage beddings on microsomal oxidative enzymes in rat liver   总被引:1,自引:0,他引:1  
The purpose of the present studies was to evaluate the effects of some commercially available cage beddings on rat liver microsomal cytochrome P-450-dependent drug-metabolizing enzyme, ethylmorphine N-demethylase, and the carcinogen-metabolizing enzyme, benzo(a)pyrene hydroxylase. Sprague-Dawley rats were housed in cages containing cedar chip, corncob or heat-treated pinewood bedding for 3 weeks. Control rats were housed in cages on wire bottom floors containing no bedding material. Rats housed in cages containing cedar chip showed 18, 46 and 49% increases in liver cytochrome P-450 content, ethylmorphine N-demethylase and benzo(a)pyrene hydroxylase activities, respectively. The liver enzyme activities of rats housed in cages containing corncob bedding were similar to those obtained with control rats. In contrast, the pinewood-bedded rats showed a 21% decrease in ethylmorphine N-demethylase activity without affecting cytochrome P-450 content and benzo(a)pyrene hydroxylase activity. Hexobarbital-induced sleep times of the variously bedded rats were similar to those of control animals. These data suggest that the commercial bedding materials differ in their abilities to affect liver microsomal enzymes. Thus, interlaboratory variability in basal enzyme activities reported in the literature may be partly due to bedding materials used in the animal's cages.  相似文献   
6.
7.
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly.  相似文献   
8.
9.
Although closely related at the molecular level, the capsular polysaccharide (CPS) of serotype 10F Streptococcus pneumoniae and coaggregation receptor polysaccharide (RPS) of Streptococcus oralis C104 have distinct ecological roles. CPS prevents phagocytosis of pathogenic S. pneumoniae, whereas RPS of commensal S. oralis functions as a receptor for lectin-like adhesins on other members of the dental plaque biofilm community. Results from high resolution NMR identified the recognition region of S. oralis RPS (i.e. Galfβ1–6GalNAcβ1–3Galα) in the hexasaccharide repeat of S. pneumoniae CPS10F. The failure of this polysaccharide to support fimbriae-mediated adhesion of Actinomyces naeslundii was explained by the position of Galf, which occurred as a branch in CPS10F rather than within the linear polysaccharide chain, as in RPS. Carbohydrate engineering of S. oralis RPS with wzy from S. pneumoniae attributed formation of the Galf branch in CPS10F to the linkage of adjacent repeating units through sub terminal GalNAc in Galfβ1–6GalNAcβ1–3Galα rather than through terminal Galf, as in RPS. A gene (wcrD) from serotype 10A S. pneumoniae was then used to engineer a linear surface polysaccharide in S. oralis that was identical to RPS except for the presence of a β1–3 linkage between Galf and GalNAcβ1–3Galα. This polysaccharide also failed to support adhesion of A. naeslundii, thereby establishing the essential role of β1–6-linked Galf in recognition of adjacent GalNAcβ1–3Galα in wild-type RPS. These findings, which illustrate a molecular approach for relating bacterial polysaccharide structure to function, provide insight into the possible evolution of S. oralis RPS from S. pneumoniae CPS.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号