首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   10篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
1.
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.  相似文献   
2.
The present study shows that Langerhans cells can be differentiated from Interdigitating cells at the light microscopic level. Superficial lymph nodes and skin taken from necropsies and the lymph nodes of dermatopathic lymphadenopathy (DPL) were used for this experiment. Sections of lymph node and skin were embedded using the acetone, methyl benzoate and xylene (AMeX) method and dendritic cells were immunostained with anti S-100 protein antibody (S-100, and OKT-6 (CD1a) using the restaining method. Langerhans cells in the skin were positive for both CD1a and S-100. Dendritic cells positive for both CD1a and S-100, and dendritic cells positive for S-100, but not for CD1a were observed in superficial lymph nodes. In normal superficial lymph nodes, there were more interdigitating cells than Langerhans cells. The majority of the dendritic cells in the DPL were Langerhans cells. We conclude that the S-100 and CD1a positive cells are Langerhans cells, and the S-100 positive-CD1a negative cells are interdigitating cells.  相似文献   
3.
The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.  相似文献   
4.
5.
We isolated aromatics-degrading bacteria from the gut of a lower termite, Coptotermes formosanus, using a mineral salt medium containing various aromatic compounds as the sole carbon source. Two species, Burkholderia sp. strain VE22 and Citrobacter sp. strain VA53, were isolated by aerobic enrichment culture with veratraldehyde and vanillin, respectively. Strain VA53 could also grow and metabolize vanillin anaerobically.  相似文献   
6.
The anaerobic free-living ciliate, Trimyema compressum, is known to harbor both methanogenic archaeal and bacterial symbionts in the cytoplasm. To clarify their phylogenetic belongings, a full-cycle rRNA approach was applied to this symbiosis. Phylogenetic analysis showed that the methanogenic symbiont was related to Methanobrevibacter arboriphilicus, which was distantly related to symbionts found in other Trimyema species. This result suggested that Trimyema species do not require very specific methanogenic symbionts, and symbiont replacement could have occurred in the history of Trimyema species. On the other hand, the bacterial symbiont was located near the lineage of the family Syntrophomonadaceae in the phylum Firmicutes. The sequence similarity between the bacterial symbiont and the nearest species was 85%, indicating that bacterial symbionts may be specific to the Trimyema species. The elimination of bacterial symbionts from the ciliate cell by antibiotic treatment resulted in considerably decreased host growth. However, it was not restored by stigmasterol addition (<2 μg ml−1), which was different from the previous report that showed that the symbiont-free strain required exogenous sterols for growth. In addition, the decline of host growth was not accompanied by host metabolism shift toward the formation of more reduced products, which suggested that the contribution of bacterial symbionts to the host ciliate was not a dispose of excessive reducing equivalent arising from the host’s fermentative metabolism as methanogenic symbionts do. This study showed that bacterial symbionts make a significant contribution to the host ciliate by an unknown function and suggested that interactions between bacterial symbionts and T. compressum are more complicated than hitherto proposed.  相似文献   
7.
To understand the physiological basis of methanogenic archaea living on interspecies H(2) transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H(2) supplier. Comparative proteomic analysis showed that global protein expression of methanogen cells in the model coculture was substantially different from that of pure cultured cells. In brief, in syntrophic coculture, although methanogenesis-driven energy generation appeared to be maintained by shifting the pathway to the alternative methyl coenzyme M reductase isozyme I and cofactor F(420)-dependent process, the machinery proteins involved in carbon fixation, amino acid synthesis, and RNA/DNA metabolisms tended to be down-regulated, indicating restrained cell growth rather than vigorous proliferation. In addition, our proteome analysis revealed that α subunits of proteasome were differentially acetylated between the two culture conditions. Since the relevant modification has been suspected to regulate proteolytic activity of the proteasome, the global protein turnover rate could be controlled under syntrophic growth conditions. To our knowledge, the present study is the first report on N-acetylation of proteasome subunits in methanogenic archaea. These results clearly indicated that physiological adaptation of hydrogenotrophic methanogens to syntrophic growth is more complicated than that of hitherto proposed.  相似文献   
8.
From the aerial parts of Crepidiastrum lanceolatum, six guaiane-type sesquiterpene glucosides, lanceocripidiasides A-F were isolated together with five known sesquiterpene glucosides, ixerin Y, crepidialanceosides A and B, and youngiasides A and D, two known megastigmane glucosides, icariside B1 and corchoionoside A, and benzyl 6'-O-beta-D-apiofuranosyl-beta-D-glucopyranoside. Structures were elucidated by spectroscopic analyses.  相似文献   
9.
The chemical investigation of leaves of Bridelia glauca f. balansae afforded six megastigmane glucosides, named bridelionosides A-F, along with seven known megastigmane glucosides. Their structures were determined by a combination of spectroscopic analyses and by application of the modified Mosher's method.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号