首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   12篇
  国内免费   18篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   10篇
  2017年   7篇
  2016年   12篇
  2015年   12篇
  2014年   16篇
  2013年   17篇
  2012年   19篇
  2011年   20篇
  2010年   6篇
  2009年   11篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有214条查询结果,搜索用时 31 毫秒
1.

Background

Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play “driver” roles in tumorigenesis, whereas others are only “passengers”.

Results

Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-specific for basal-like, luminal-A and HER2+ subtypes of breast cancer.

Conclusion

The proposed framework proved effective in identifying cancer driver genes from genome-wide gene methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and selective epigenetic therapy.  相似文献   
2.
Increased oxidative stress is a major characteristic of restenosis after angioplasty. The oxidative stress is mainly created by oxidants such as reactive oxygen species (ROS), which are assumed to play an important role in neointima formation after angioplasty. DNA is a sensitive target for oxidants; however, oxidative DNA damage remains a poorly examined field in the pathogenesis of restenosis. In the present study, we demonstrated that the expression of the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) was quickly increased in rat carotid arteries after balloon injury. It reached its peak at 14 days after injury and still kept high expression at 28 days after injury. The immunostaining of 8-oxo-dG was present predominantly in the neointima. In response to oxidative DNA damage, the DNA repair enzyme poly(ADP-ribose) polymerase-1 (PARP-1) was significantly increased after balloon injury. The time course change and location of PARP-1 is similar to that of 8-oxo-dG. Daily injections of the PARP-1 inhibitor PJ34 (5 mg.kg(-1).day(-1) ip) attenuated neointima formation by approximately 40% at 7, 14, and 28 days after balloon injury. Treatment with PJ34 inhibited leukocyte infiltration and improved both anatomic (reendothelialization) and functional (endothelial function) recovery of endothelial cells after balloon injury. In conclusion, levels of oxidative DNA damage and the DNA repair enzyme PARP-1 are increased in vessels after balloon injury. Inhibition of PARP-1 attenuates neointima formation through inhibition of leukocyte infiltration and improvement of endothelial cell recovery after balloon injury. Targeting of the DNA repair enzyme might be a therapeutic strategy for restenosis.  相似文献   
3.
Zhao D  Fu C  Chen Y  Ma F 《Plant cell reports》2004,23(7):468-474
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.Abbreviations AS Acetosyringone - BA Benzyladenine - cef Cefotaxime sodium - DW Dry weight - FW Fresh weight - HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid - km Kanamycin - NAA -Naphthaleneacetic acid - SDS Sodium dodecyl sulfate  相似文献   
4.
Genetically susceptible bacteria become antibiotic tolerant during chronic infections, and the mechanisms responsible are poorly understood. One factor that may contribute to differential sensitivity in vitro and in vivo is differences in the time-dependent tobramycin concentration profile experienced by the bacteria. Here, we examine the proteome response induced by subinhibitory concentrations of tobramycin in Pseudomonas aeruginosa cells grown under planktonic conditions. These efforts revealed increased levels of heat shock proteins and proteases were present at higher dosage treatments (0.5 and 1 μg/ml), while less dramatic at 0.1 μg/ml dosage. In contrast, many metabolic enzymes were significantly induced by lower dosages (0.1 and 0.5 μg/ml) but not at 1 μg/ml dosage. Time course proteome analysis further revealed that the increase of heat shock proteins and proteases was most rapid from 15 min to 60 min, and the increased levels sustained till 6 h (last time point tested). Heat shock protein IbpA exhibited the greatest induction by tobramycin, up to 90-fold. Nevertheless, deletion of ibpA did not enhance sensitivity to tobramycin. It seemed possible that the absence of sensitization could be due to redundant functioning of IbpA with other proteins that protect cells from tobramycin. Indeed, inactivation of two heat shock chaperones/proteases in addition to ibpA in double mutants (ibpA/clpB, ibpA/PA0779 and ibpA/hslV) did increase tobramycin sensitivity. Collectively, these results demonstrate the time- and concentration-dependent nature of the P. aeruginosa proteome response to tobramycin and that proteome modulation and protein redundancy are protective mechanisms to help bacteria resist antibiotic treatments.The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the natural environment and causes human infections (1). P. aeruginosa can metabolize various carbon and nitrogen compounds and persists under nutrient-poor and hostile growth environments (2, 3). One example is P. aeruginosa pulmonary infection of cystic fibrosis (CF) patients. Despite stress induced by host defenses and high concentrations of antibiotics, P. aeruginosa cells are able to persistently colonize CF airways (4).The aminoglycoside tobramycin is a front-line drug currently used in the treatment of P. aeruginosa in CF and other diseases. It is supplied in the forms of inhaled solution (TOBI) and intravenous injection. The tobramycin concentrations in airways after 300-mg dosage TOBI inhalation can reach 1,000 μg per g of sputum (5, 6). This concentration is in the range of 10 to 1,000 times of the minimal inhibitory concentration (MIC) for P. aeruginosa clinical isolates tested ex vivo (6). However, even with such high tobramycin concentrations, chronic P. aeruginosa infections are rarely eradicated (6). This is true even when the infecting bacteria are antibiotic sensitive, as is the case early in disease (7).One possible reason for P. aeruginosa persistence in vivo could relate to the time dependence of local concentrations of tobramycin experienced by P. aeruginosa in CF patient airways. Many factors, including inflammatory responses, blood and lymphatic circulations, and air flow distribution (for inhaled antibiotics), can alter the local antibiotic concentrations. In addition, P. aeruginosa cells can form biofilms in CF lungs and other infection sites (8), and biofilm exopolysaccharide layers may slow the diffusion of tobramycin (9, 10). P. aeruginosa cells in the inner layers of biofilms may experience lower concentrations and more gradual increase of tobramycin levels than those in outer layers (10, 11). Furthermore, even if final tobramycin concentration levels inside the biofilm eventually grow to match the highest levels experienced elsewhere, bacteria in these inner regions have experienced a slower increase, during which time proteome levels could be altered to promote the “adapted resistant state” (12). Adaptive resistance can also be induced in planktonic (free-living) P. aeruginosa (13, 14), and conventional MIC assays are not designed to measure this.Once induced, the adaptive resistance confers bacteria higher resistance to antibiotic treatments (13, 14) and is associated with decreased clinical antibiotic treatment efficacy (15). Interestingly, the adaptive resistance is time dependent and reversible. Typical adaptive resistance was observed starting 1 h after antibiotic exposure, and the drug susceptibility was regained after 36 h intervals (14, 15). Thus, adaptive resistance mechanisms may contribute in part to the disparity of in vivo persistence and ex vivo susceptibility to antibiotics in MIC tests.As an initial step toward defining adaptive resistance mechanisms, we investigated the time- and concentration-dependence of P. aeruginosa proteome response to tobramycin in planktonic conditions. Since the most effective protective responses may operate before killing begins and the rate of change of drug levels is likely to depend on ambient conditions, we studied bacteria exposed to low, subinhibitory levels of tobramycin (0.1, 0.5, and 1.0 μg/ml) at a range of time points (15, 60, 120, and 360 min) after exposure. The candidate proteome marker of P. aeruginosa for tobramycin response, heat shock protein IbpA, was further investigated with genetic mutagenesis and MIC assays.  相似文献   
5.
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70 kDa heat shock protein (hsp70) and 60 kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois’ leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.  相似文献   
6.
Studies on the polymorphisms of Xeroderma Pigmentosum Group D (XPD) have shown inconclusive trends in the risk of bladder cancer. The purpose of this study is to evaluate the role of XPD single nucleotide polymorphisms in bladder cancer susceptibility. We performed a meta-analysis on all available studies, which included 5,368 and 6,683 XPD Lys751Gln cases and controls and 3,220 and 4,391 Asp312Asn cases and controls, respectively. Overall, Significant risk effects of Lys751Gln genotype was found under recessive model contrast [Gln/Gln vs. (Gln/Lys + Lys/Lys)] [P = 0.04, OR = 1.12; 95% CI (1.01, 1.26)], and subtle but insignificantly increased risks between Lys751Gln and bladder cancer were observed under allele contrast (Gln vs. Lys) and homologous contrast (Gln/Gln vs. Lys/Lys) in all subjects. The 751Gln allele had no significant effect on bladder cancer in all subgroups (Asian, Caucasian and USA). Significant risk effects of Asp312Asn polymorphism on bladder susceptibility were observed in all subjects under all genetic contrasts, however, stratified analyses showed that the 312Asn allele showed different risk effects in USA and Caucasian. The Gln/Gln genotype acts as a risk factor in its association with bladder cancer, and the effect of Lys751Gln polymorphism on bladder susceptibility should be studied with larger, stratified population; the 312Asn allele has an important role in the etiology of bladder cancer whereas the ethnic background should be carefully concerned in further studies.  相似文献   
7.
8.
Liu J  Lv F  Sun W  Tao C  Ding G  Karaplis A  Brown E  Goltzman D  Miao D 《PLoS genetics》2011,7(9):e1002294
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.  相似文献   
9.
Xu C  Zhao L  Pan X  Samaj J 《PloS one》2011,6(8):e22992

Background

The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development.

Methodology/Principal Findings

Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment.

Conclusions/Significance

These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana.  相似文献   
10.
Angiotensin II (ANG II) promotes neointimal growth in the balloon-injured rat carotid artery. However, the mechanism by which ANG II stimulates neointimal growth during vascular injury is not known. In cultured vascular smooth muscle cells, ANG II activates Akt through cytosolic phospholipase A2 (cPLA2)-dependent phospholipase D2 (PLD2). This study was conducted to determine whether ANG II-induced neointimal thickening is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid arteries. ANG II-stimulated neointimal growth was inhibited by exposure of the injured carotid arteries to an adenovirus containing a dominant negative Akt mutant (intima-to-media ratio from 3.01 +/- 0.31 to 1.44 +/- 0.14, P < 0.01) or a retrovirus containing cPLA2 small interfering RNA (siRNA; intima-to-media ratio from 3.01 +/- 0.31 to 1.16 +/- 0.36, P < 0.001) or PLD2 siRNA (intima-to-media ratio from 3.01 +/- 0.31 to 1.33 +/- 0.11, P < 0.001). The effect of cPLA2 and PLD2 siRNA to reduce the ANG II-induced increase in neointimal thickening was associated with reduced expression of cPLA2 and PLD2 as determined by immunohistochemical analysis in injured carotid arteries. Western blot analysis showed that Akt phosphorylation that was increased by ANG II was inhibited in injured carotid arteries 2 days after exposure to cPLA2 or PLD2 siRNA or in injured arteries isolated after exposure to these agents for 30 min and then placed in tissue culture media for 24 h in the presence of these agents. These data suggest that the ANG II-induced neointimal growth is mediated by the activation of Akt through a mechanism dependent on cPLA2 and PLD2 activation in balloon-injured rat carotid arteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号