首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Lohr M  Im CS  Grossman AR 《Plant physiology》2005,138(1):490-515
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.  相似文献   
2.
During the course of investigation of haloalkalophilic bacteria, we screened some heavily polluted soil samples from the mudflats surrounding the city of Inchon, Korea, for their bioflocculant producing ability. Based on the screening, one isolate no. 450 tentatively identified as Bacillus sp. produced an extracellular polysaccharide having flocculation activity. The isolate produced the polysaccharide during the late logarithmic growth phase. The polymer could be recovered from the supernatant of the fermented medium by cold ethanol precipitation and purified by treating with cetylpyridinium chloride (CPC). The polymer was identified as an acidic polysaccharide containing neutral sugars, namely, galactose, fructose, glucose and raffinose, and uronic acids as major and minor components, respectively. The amount of neutral sugars, uronic acid and amino sugars were 52.4, 17.2 and 2.4%, respectively. The molecular weight of the polysaccharide was found to be 2.2×106 Da. The Fourier transform infrared spectrophotometer (FT-IR) revealed typical characteristics of polysaccharides. 1H NMR spectrum showed that the polymer is a heteroglycan. Thermogravimetric (TGA) analysis indicated the degradation temperature (Td) at 290 °C. The rheological analysis of the polymer 450 revealed the pseudoplastic property with shear-thinning effect, while the compression test indicated that the polymer had high gel strength, and the S.E.M. studies showed that the polymer has a porous structure with small pore-size distribution indicating the compactness of the polymer.  相似文献   
3.
Lee  Ju-Hyun  Shin  Hyun-Ju  Chang  Chung-Soon  Paik  Seung R. 《Neurochemical research》1998,23(11):1427-1434
NACP, the precursor protein of the non-amyloid /A4 protein (A) component of Alzheimer's disease (AD) amyloid, also known as -synuclein was shown to undergo self-oligomerization only in the presence of a modified A fragment (residues 25–35) by using a relatively hydrophobic coupling reagent, dicyclohexylcarbodiimide (DCCD). Since the oligomerization not only required a relatively high concentration of DCCD but also its efficiency was suppressed even at a slightly basic pH of 7.5, another coupling reagent called N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) was examined in order to make use of this technique to access the functional aspects of NACP in vitro by exploring more accurate and reproducible reaction conditions. The EEDQ also gave rise to the NACP oligomerization only in the presence of A25-35 among the variously modified A peptides. The reagent was about three times more effective than DCCD in terms of its optimal concentration to visualize the oligomers. In addition, its oligomerizing potency was not affected by the basic condition. Although physiological and pathological significance of the NACP self-oligomerization are currently unknown, this dramatic phenomenon and its visualization technique could shed light on the determination of molecular relationships of NACP with various intracellular or extracellular biomolecules related to the pathological conditions of Alzheimer's and Parkinson's diseases.  相似文献   
4.
An oxidative and SDS-stable alkaline protease secreted by a marine haloalkalophilic Bacillus clausii isolated from the tidal mud flats of the Korean Yellow Sea near Inchon City was investigated in batch fermentation in shake flasks and in a bioreactor under a range of conditions. The isolate produced maximum protease yields (15,000 U ml−1) under submerged fermentation conditions at 42 °C for 40 h with an aeration of 1.5 v/v/min and agitation of 400 rev/min in a formulated soybean—casein medium (pH 9.6) containing (w/v): soybean meal (2%), casein (1%), corn starch (0.5%), NH4Cl (0.05%), NaCl (0.05%), KH2PO4(0.04%), K2HPO4(0.03%), MgSO4(0.02%), yeast extract (0.01%) and Na2CO3(0.6%). The optimal pH and temperature of activity of the partially purified enzyme were 11.5 and 80 °C, respectively. The alkaline protease showed extreme stability towards SDS and oxidizing agents, retaining its activity above 96 and 75% on treatment for 72 h with 5% SDS and 5% H2O2, respectively. The inhibition profile exhibited by phenylmethanesulphonyl fluoride suggested that the protease from B. clausii belongs to the family of serine proteases.  相似文献   
5.
6.
Novel mutants (xan1 and xan2) of the unicellular green alga Nannochloropsis oculata are impaired in xanthophyll biosynthesis, thereby producing aberrant levels of xanthophylls. High-performance liquid chromatography (HPLC) analysis revealed that the xan1 and xan2 mutants have double the violaxanthin (V) content, but have significantly decreased lutein content in their cells compared to the wild type. Furthermore, these mutants contain two to three times more zeaxanthin than the wild type under low light (LL) growth conditions. However, this xanthophyll aberration in N. oculata did not affect the normal growth and the major cellular chemical composition of the xan1 strain. The xanthophyll pool size of the LL-grown mutant was 1.8-fold greater than that of the wild type. Under high light (HL) growth conditions, V content was substantially decreased in both the mutant and wild types because of the epoxidation state of the xanthophylls. Under LL growth conditions, the deepoxidation states of the xanthophyll pool sizes were 0.1 and 1.2 in the wild type and the mutant, respectively. However, the deepoxidation states of the xanthophyll pool sizes were 0.78 in the wild type and 0.87 in the mutant under HL growth conditions. We observed that the level of one of the commercially important xanthophylls, zeaxanthin, was higher in the mutant than in the wild type under all culture conditions. This mutant is discussed in terms of its commercial value and potential utilization by the algal biotechnology industry for the production of zeaxanthin.  相似文献   
7.
alpha-Synuclein, a pathological component of Parkinson's disease by constituting the Lewy bodies, has been suggested to be involved in membrane biogenesis via induction of amphipathic alpha-helices. Since the amphipathic alpha-helix is also known as a recognition signal of calmodulin for its target proteins, molecular interaction between alpha-synuclein and calmodulin has been investigated. By employing a chemical coupling reagent of N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline, alpha-synuclein has been shown to yield a heterodimeric 1 : 1 complex with calmodulin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and even absence of calcium, whereas beta-synuclein was more dependent upon calcium for its calmodulin interaction. The selective calmodulin interaction of alpha-synuclein in the absence of calcium was also demonstrated with the aggregation kinetics of the synucleins in which only the alpha-synuclein aggregation was affected by calmodulin. A reversible binding assay confirmed that alpha-synuclein interacted with the Ca2+-free as well as the Ca2+-bound calmodulins with almost identical Kds of 0.35 micro m and 0.31 micro m, respectively, while beta-synuclein preferentially recognized the Ca2+-bound form with a Kd of 0.68 micro m. By using a C-terminally truncated alpha-synuclein of alpha-syn97, the calmodulin binding site(s) on alpha-synuclein was(were) shown to be located on the N-terminal region where the amphipathic alpha-helices have been suggested to be induced upon membrane interaction. By employing liposome and calmodulin in a state of being either soluble or immobilized on agarose, actual competition of alpha-synuclein between membranes and calmodulin was demonstrated with the observation that alpha-synuclein previously bound to the liposome was released upon specific interaction with the calmodulins. Taken together, these data may suggest that alpha-synuclein could act not only as a negative regulator for calmodulin in the presence and even absence of calcium, but it could also exert its activity at the interface between calmodulin and membranes.  相似文献   
8.
Ferritin is a major eukaryotic protein and in humans is the protein of iron storage. A partial gene fragment of ferritin (255 bp) taken from the total RNA of Periserrula leucophryna, was amplified by RT-PCR using oligonucleotide primers designed from the conserved metal binding domain of eukaryotic ferritin and confirmed by DNA sequencing. Using the 32P-labeled partial ferritin cDNA fragment, 28 different clones were obtained by the screening of the P. leucophryna cDNA library prepared in the Uni-ZAP XR vector, sequenced and characterized. The longest clone was named the PLF (Periserrula leucophryna ferritin) gene and the nucleotide and amino acid sequences of this novel gene were deposited in the GenBank databases with accession numbers DQ207752 and ABA55730, respectively. The entire cDNA of PLF clone was 1109 bp (CDS: 129-653), including a coding nucleotide sequence of 525 bp, a 5'-untranslated region of 128 bp, and a 3'-noncoding region of 456 bp. The 5'-UTR contains a putative iron responsive element (IRE) sequence. Ferritin has an open reading frame encoding a polypeptide of 174 amino acids including a hydrophobic signal peptide of 17 amino acids. The predicted molecular weights of the immature and mature ferritin were calculated to be 20.3 kDa and 18.2 kDa, respectively. The region encoding the mature ferritin was subcloned into the pT7-7 expression vector after PCR amplification using the designed primers and included the initiation and termination codons; the recombinant clones were expressed in E. coli BL21(DE3) or E. coli BL21(DE3)pLysE. SDS-PAGE and western blot analysis showed that a ferritin of approximately 18 kDa (mature form) was produced and that by iron staining in native PAGE, it is likely that the recombinant ferritin is correctly folded and assembled into a homopolymer composed of a single subunit.  相似文献   
9.
Oxidized glutathione stimulated the amyloid formation of alpha-synuclein   总被引:2,自引:0,他引:2  
Paik SR  Lee D  Cho HJ  Lee EN  Chang CS 《FEBS letters》2003,537(1-3):63-67
alpha-Synuclein is the major filamentous constituent of Lewy bodies found in Parkinson's disease (PD). The amyloid formation of alpha-synuclein was significantly facilitated by oxidized glutathione (GSSG) as the lag period of the aggregation kinetics was shortened by 2.5-fold from its absence. Reduced glutathione (GSH), on the other hand, did not influence the lag phase although it increased the final amyloid formation. The GSSG stimulation was specific for not only alpha-synuclein but also its intactness. The preferred GSSG interaction of alpha-synuclein to GSH was also demonstrated with dissociation constants of 0.53 and 43.5 mM, respectively. It is suggested that the oxidative stress favoring the GSSG generation from GSH could result in the augmented amyloid formation of alpha-synuclein, which ought to be related to the pathogenesis of PD.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号