首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2018年   1篇
  2007年   2篇
排序方式: 共有3条查询结果,搜索用时 375 毫秒
1
1.
Li PY  Chang YC  Tzang BS  Chen CC  Liu YC 《Mutation research》2007,629(2):133-139
Amoxicillin is a commonly prescribed drug for anti- bacterial infection. In this study, we are interested in the effect of the drug on the cellular DNA integrity. Amoxicillin was added to the human or hamster cells in culture, and the DNA lesions induced by the drug were assessed by a comet assay with nuclear extract incubation (Wang et al., 2005 Anal Biochem 337: 70-75). Amoxicillin at 5mM rapidly induced DNA lesions in human AGS cells. The level of DNA lesions attained a maximum at about 1h, and then declined steadily and reached almost the basal level at 6h following the drug treatment. Similar induction pattern of DNA lesions was found with amoxicillin-related antibiotics such as ampicillin but not with the unrelated antibiotics such as kanamycin. For studying the repair kinetics, the cells were treated with amoxicillin for only 1h and continued culture in the absence of the drug for a certain period of time before subsequent analysis. Repair of the amoxicillin-induced DNA lesions was essentially completed within 4h. Such repair may not involve nucleotide excision repair (NER) pathway because the repair was completed with similar kinetics in both NER proficient Chinese hamster CHO-K1 cells and its isogenic NER deficient UV24 cells. Instead, the repair may involve base excision repair (BER) pathway because immunodepletion of OGG1/2, glycosylases involved in BER rendered the nuclear extract unable to excise DNA lesions induced by amoxicillin in the modified comet assay. Furthermore, amoxicillin induced intracellular reactive oxygen species (ROS) at the tempo similar to that of DNA lesions induction. Thus, we hypothesize that amoxicillin causes oxidative DNA damage in mammalian cells via ROS.  相似文献   
2.
Background

Human gut microbiome has an essential role in human health and disease. Although the major dominant microbiota within individuals have been reported, the change of gut microbiome caused by external factors, such as antibiotic use and bowel cleansing, remains unclear. We conducted this study to investigate the change of gut microbiome in overweight male adults after bowel preparation, where none of the participants had been diagnosed with any systemic diseases.

Methods

A total of 20 overweight, male Taiwanese adults were recruited, and all participants were omnivorous. The participants provided fecal samples and blood samples at three time points: prior to bowel preparation, 7 days after colonoscopy, and 28 days after colonoscopy. The microbiota composition in fecal samples was analyzed using 16S ribosome RNA gene amplicon sequencing.

Results

Our results demonstrated that the relative abundance of the most dominant bacteria hardly changed from prior to bowel preparation to 28 days after colonoscopy. Using the ratio of Prevotella to the sum of Prevotella and Bacteroides in the fecal samples at baseline, the participants were separated into two groups. The fecal samples of the Type 1 group was Bacteroides-dominant, and that of the Type 2 group was Prevotella-dominant with a noticeable presence Bacteroides. Bulleidia appears more in the Type 1 fecal samples, while Akkermensia appears more in the Type 2 fecal samples. Of each type, the gut microbial diversity differed slightly among the three collection times. Additionally, the Type 2 fecal microbiota was temporarily susceptible to bowel cleansing. Predictive functional analysis of microbial community reveals that their activities for the mineral absorption metabolism and arachidonic acid metabolism differed significantly between the two types. Depending on their fecal type, the variance of triglycerides and C-reactive protein also differed between the two types of participants.

Conclusions

Depending upon the fecal type, the microbial diversity and the predictive functional modules of microbial community differed significantly after bowel preparation. In addition, blood biochemical markers presented somewhat associated with fecal type. Therefore, our results might provide some insights as to how knowledge of the microbial community could be used to promote health through personalized clinical treatment.

  相似文献   
3.
The success of neuronal implantable microsystems relies on the quality of the interface with neuronal cells. Depending on the application, specifically engineered surfaces may either prevent or enhance cell/tissue growth with an appropriate host response. The surface chemistry and topography have major effects on the cell adherence and the interaction between the tissue and devices. We report on a simple technique to precisely explant cortical neurons in a serum-free medium on 2D electrode arrays and investigated the pad size effect on neuron cell culture and immobilization. We produced gold patterns on glass substrates using microfabrication processes. 11-Amino-1-undecanethiol self-assembled monolayer was coated only on the gold surface. Cortical neurons were cultured on the arrays to examine the dependence of neuron growth and cells distribution on pad size. We found that the terminal functional groups of the highly oriented 11-amino-1-undecanethiol thin film are essential for generating cell-adhesive areas for the rat cortical neurons. A 50 microm x 50 microm SAM pad size was found to be suitable for single cortical neuron immobilization, while the larger pads provide excellent neuron coverage. This technology may enable precise and localized neuron stimulation and surveillance for both biological research and medical applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号