首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   7篇
  国内免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   17篇
  2010年   12篇
  2009年   9篇
  2008年   15篇
  2007年   17篇
  2006年   19篇
  2005年   12篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   8篇
  1998年   3篇
  1995年   1篇
  1994年   3篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

The purpose of this study was to explore the functional implication of microRNA-218 (miR-218) in diabetic nephropathy (DN) through high-glucose-stimulated renal proximal tubule impairment. Biological function experiments showed that miR-218 and inflammatory factors TNF-α and IL-1β were highly expressed in renal proximal tubule under high-glucose conditions. Inhibiting miR-218 alleviated renal tubular cell injury, which was represented by miR-218 inhibitor facilitating renal tubular cell vitality whilst reducing its apoptosis and levels of inflammation factors. In addition, we confirmed that miR-218 directly targeted GPRC5A and negatively regulated its expression. Co-transfection assay showed that overexpression of GPRC5A accentuated the mitigated action of miR-218 inhibitor on renal proximal tubule cell injury induced by high-glucose. Accordingly, these data indicated that downregulation of miR-218 can assuage high-glucose-resulted renal tubular cell damage, and its ameliorative effect was achieved by negative regulation of GPRC5A, which provides a novel direction for unearthing the pathogenesis and even further biological treatment of DN.  相似文献   
2.
3.
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/ time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5‘-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.  相似文献   
4.
Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae. Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.Cotton (Gossypium spp.) is one of the most economically important crops worldwide and a number of pathogens affect the growth and development of cotton plants. The soil-borne pathogen Verticillium dahliae (V. dahliae) causes the destructive vascular disease Verticillium wilt, which results in devastating reductions in plant mass, lint yield, and fiber quality (Bolek et al., 2005; Cai et al., 2009). To date, Verticillium wilt has not been effectively controlled in the most common cultivated cotton species, upland cotton (Gossypium hirsutum), and cultivars with stably inherited resistance to this disease are currently unavailable (Aguado et al., 2008; Jiang et al., 2009; Zhang et al., 2012a). Unlike upland cotton, sea-island cotton (Gossypium barbadense), which is only cultivated on a small scale, possesses Verticillium wilt resistance. Exploring the molecular mechanisms involved in the defense responses against V. dahliae invasion in G. barbadense can provide useful information for generating wilt-resistant G. hirsutum species through molecular breeding.During the past decades, progress has been made in studying the defense responses against V. dahliae infection in cotton. Global analyses have demonstrated that several signaling pathways, including those mediated by salicylic acid, ethylene, jasmonic acid, and brassinosteroids, activate distinct processes involved in V. dahliae defense (Bari and Jones, 2009; Grant and Jones, 2009; Gao et al., 2013a). Accumulating evidence indicates that many V. dahliae-responsive genes, such as GbWARKY1, GhSSN, GbERF, GhMLP28, GhNDR1, GhMKK2, and GhBAK1 (Qin et al., 2004; Gao et al., 2011, 2013b; Li et al., 2014a; Sun et al., 2014; Yang et al., 2015), play crucial roles in defense against Verticillium wilt. In addition, the biosynthesis of terpenoids, lignin, and gossypol also makes important contributions to V. dahliae resistance in cotton (Tan et al., 2000; Luo et al., 2001; Xu et al., 2011; Gao et al., 2013a). Together, these studies have greatly improved our understanding of the complex innate defense systems against V. dahliae infection in cotton.The initial interaction between plants and pathogens takes place in the apoplast, the compartment of the plant cell outside the cell membrane, including the cell wall and intercellular space (Dietz, 1997). In response to pathogen colonization, the attacked plant cells undergo significant cellular and molecular changes, such as reinforcement of the cell wall and secretion of antimicrobial molecules into the apoplastic space (Bednarek et al., 2010). Thus, the apoplast serves as the first line of defense against microbe invasion, and apoplast immunity can be considered an important component of the plant immune response to pathogens.Upon recognition of pathogen infection, rapid production of reactive oxygen species [the reactive oxygen species (ROS) burst] occurs in the apoplast (Lamb and Dixon, 1997; Torres et al., 2006; Torres, 2010). This ROS burst is regarded as a core component of the early plant immune response (Daudi et al., 2012; Doehlemann and Hemetsberger, 2013). During defense responses, apoplastic ROS can diffuse into the cytoplasm and serve as signals, interacting with other signaling processes such as phosphorylation cascades, calcium signaling, and hormone-mediated pathways (Kovtun et al., 2000; Mou et al., 2003). Apoplastic ROS can also directly strengthen the host cell walls by oxidative cross linking of glycoproteins (Bradley et al., 1992; Lamb and Dixon, 1997) or the precursors of lignin and suberin polymers (Hückelhoven, 2007). Moreover, apoplastic ROS can directly affect pathogens by degrading nucleic acids and peptides from microbes or causing lipid peroxidation and membrane damage in the microbe (Mehdy, 1994; Lamb and Dixon, 1997; Apel and Hirt, 2004; Montillet et al., 2005).ROS levels in the apoplast increase rapidly in response to a variety of pathogens, but subsequently return to basal levels. The rapid production and dissipation of apoplastic ROS indicate that this process is finely regulated. Two classes of enzymes, NADPH oxidases and class III peroxidases, account for the rapid ROS burst in the apoplast (Bolwell et al., 1995; O’Brien et al., 2012). NADPH oxidases are directly phosphorylated by the receptor-like kinase BIK1 to enhance ROS generation (Li et al., 2014b). Also, due to the toxicity of high levels of ROS, plants have evolved enzymatic and nonenzymatic mechanisms to eliminate ROS, thereby preventing or reducing oxidative damage (Rahal et al., 2014; Torres et al., 2006). However, the molecular system responsible for the regulation of apoplastic ROS homeostasis during the immune response is not well understood.In this study, we performed a comparative analysis of the apoplastic proteomes in control roots compared with V. dahliae-inoculated roots of Gossypium barbadense (wilt-resistant sea-island cotton) using the two-dimensional differential gel electrophoresis (2D-DIGE) technique. Among the differentially expressed apoplastic proteins, ROS-related proteins were found to be major components, including a thioredoxin, GbNRX1, which functions as an ROS scavenger in response to V. dahliae infection. Knock-down of GbNRX1 expression in cotton by virus-induced gene silencing (VIGS) resulted in reduced resistance to V. dahliae. Our results demonstrate that maintaining apoplastic ROS homeostasis is a crucial component of the apoplastic immune response and that GbNRX1 is an important regulator of this process.  相似文献   
5.
取12只SD(Sprague-Dawley)大鼠颈段脊髓横断面冰冻切片,用焦油紫和Pal-Weigert染色法染色,光镜观察SD大鼠颈段脊髓的组织结构,对SD大鼠脊髓灰质板层的细胞构筑进行研究。结果显示,Ⅰ层边界呈长弧形,Ⅰ、Ⅱ、Ⅲ、Ⅳ层呈层叠状排列,细胞多为椭圆形。Ⅴ、Ⅵ层均可分为内侧部和外侧部,外侧部分布大型细胞,Ⅴ层内侧部以中型椭圆形、三角形细胞为主,Ⅵ层内侧部以中型梭形细胞为主。Ⅶ层位于中间带,C5-C7Ⅶ层向前角延伸和Ⅷ层一起占据前角大部,Ⅶ及Ⅷ层的中型和大型细胞呈集中分布。Ⅷ层在C1-C4及C8占前角大部,在C5-C7位于前角内侧部。Ⅸ层主要由含大型运动神经元的核团组成。Ⅹ层由中型梭形细胞和小型星状细胞组成。对比观察发现,SD大鼠脊髓颈段板层类似于猫的Rexed分层,但灰质轮廓、板层出现节段、板层形态及其变化等方面均有所不同。  相似文献   
6.
Transforming growth factor-β (TGF-β) responsiveness in cultured cells can be modulated by TGF-β partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. Lipid rafts are plasma membrane microdomains with an important role in cell survival signaling, and cholesterol is necessary for the lipid rafts’ structure and function. Euphol is a euphane-type triterpene alcohol that is structurally similar to cholesterol and has a wide range of pharmacological properties, including anti-inflammatory and anti-cancer effects. In the present study, euphol suppressed TGF-β signaling by inducing TGF-β receptor movement into lipid-raft microdomains and degrading TGF-β receptors.  相似文献   
7.
8.
鼎湖山针阔叶混交林冠层下方CO2通量及其环境响应   总被引:2,自引:2,他引:0  
精确估算典型森林生态系统冠层下方CO2通量(Fcb)对验证陆地生态系统碳平衡模型具有重要意义。采用开路涡度相关法对鼎湖山针阔叶混交林Fcb进行定位测定,根据1周年数据分析Fcb及其对环境要素的响应特征,结果表明:(1)白天Fcb呈下降趋势表明地表植被全年具有光合能力,但总体上地表植被和土壤表现为CO2排放源;(2)Van’tHoff方程、Arrhenius方程和Lloyd-Taylor方程均可以较好反映土壤温度(Ts)与Fcb的关系,其中仅Lloyd-Talor方程能够反映温度因子敏感性指标Q10随温度的变异性特征;(3)Lloyd-Talor方程模拟的Fcb完全由Ts控制,而连乘模型由Ts和土壤水分(Ms)控制,可以反映水热条件的综合影响,对Fcb具有更强的拟合能力;(4)在Ms较大时连乘模型对Fcb的估算高于Lloyd-Talor方程,反之在干旱时段连乘模型模拟结果低于Lloyd-Talor方程,表明当存在水分胁迫时,Ms可以成为影响Fcb的主导因子;(5)2003年鼎湖山针阔叶混交林Fcb总量((787.4±296.8)gCm^-2a^-1)比静态箱-气相色谱法测得的土壤呼吸偏低17%。与箱式法相比,涡度相关法通量测定结果普遍存在偏低估算现象。  相似文献   
9.
Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpression of IDA effectuates precocious floral abscission and ectopic cell separation in latent AZ cell regions, which suggests that negative regulators are in place to prevent unrestricted and untimely AZ cell separation. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified three new mutant alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1). Here, we show that bp mutants, in addition to shedding their floral organs prematurely, have phenotypic commonalities with plants misexpressing IDA, such as enlarged AZ cells. We propose that BP/KNAT1 inhibits floral organ cell separation by restricting AZ cell size and number and put forward a model whereby IDA signaling suppresses BP/KNAT1, which in turn allows KNAT2 and KNAT6 to induce floral organ abscission.  相似文献   
10.
The type V TGF-beta receptor (TbetaR-V) plays an important role in growth inhibition by IGFBP-3 and TGF-beta in responsive cells. Unexpectedly, TbetaR-V was recently found to be identical to the LRP-1/alpha(2)M receptor; this has disclosed previously unreported growth regulatory functions of LRP-1. Here we demonstrate that, in addition to expressing LRP-1, all cells examined exhibit low affinity but high density acidic pH binding sites for LRP-1 growth regulatory ligands (TGF-beta(1), IGFBP-3, and alpha(2)M(*)). These sites, like LRP-1, are sensitive to receptor-associated protein and calcium depletion but, unlike LRP-1, are also sensitive to chondroitin sulfate and heparin and capable of directly binding ligands, which do not bind to LRP-1. Annexin VI has been identified as a major membrane-associated protein capable of directly binding alpha(2)M(*) at acidic pH. This is evidenced by: 1) structural and Western blot analyses of the protein purified from bovine liver plasma membranes by alpha(2)M(*) affinity column chromatography at acidic pH, and 2) dot blot analysis of the interaction of annexin VI and (125)I-alpha(2)M(*). Cell surface annexin VI is involved in (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) binding to the acidic pH binding sites and (125)I-alpha(2)M(*) binding to LRP-1 at neutral pH as demonstrated by the sensitivity of cells to pretreatment with anti-annexin VI IgG. Cell surface annexin VI is also capable of mediating internalization and degradation of cell surface-bound (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) at pH 6 and of forming ternary complexes with (125)I-alpha(2)M(*) and LRP-1 at neutral pH as demonstrated by co-immunoprecipitation. Trifluoperazine and fluphenazine, which inhibit ligand binding to the acidic pH binding sites, block degradation after internalization of cell surface-bound (125)I-TGF-beta(1) or (125)I-alpha(2)M(*). These results suggest that cell surface annexin VI may function as an acidic pH binding site or receptor and may also function as a co-receptor with LRP-1 at neutral pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号