首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2016年   1篇
  2012年   2篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
In the present study, we demonstrate that AC5 (type V adenylate cyclase) interacts with Ric8a through directly interacting at its N-terminus. Ric8a was shown to be a GEF (guanine nucleotide exchange factor) for several alpha subunits of heterotrimeric GTP binding proteins (Galpha proteins) in vitro. Selective Galpha targets of Ric8a have not yet been revealed in vivo. An interaction between AC5 and Ric8a was verified by pull-down assays, co-immunoprecipitation analyses, and co-localization in the brain. Expression of Ric8a selectively suppressed AC5 activity. Treating cells with pertussis toxin or expressing a dominant negative Galphai mutant abolished the suppressive effect of Ric8a, suggesting that interaction between the N-terminus of AC5 and a GEF (Ric8a) provides a novel pathway to fine-tune AC5 activity via a Galphai-mediated pathway.  相似文献   
2.
In the present study, we used the N terminus (amino acids 1 approximately 160) of type VI adenylyl cyclase (ACVI) as bait to screen a mouse brain cDNA library and identified Snapin as a novel ACVI-interacting molecule. Snapin is a binding protein of SNAP25, a component of the SNARE complex. Co-immunoprecipitation analyses confirmed the interaction between Snapin and full-length ACVI. Mutational analysis revealed that the interaction domains of ACVI and Snapin were located within amino acids 1 approximately 86 of ACVI and 33-51 of Snapin, respectively. Co-localization of ACVI and Snapin was observed in primary hippocampal neurons. Moreover, expression of Snapin specifically eliminated protein kinase C (PKC)-mediated suppression of ACVI, but not that of cAMP-dependent protein kinase (PKA) or calcium. Mutation of the potential PKC and PKA phosphorylation sites of Snapin did not affect the ability of Snapin to reverse the PKC inhibitory effect on ACVI. Phosphorylation of Snapin by PKC or PKA therefore might not be crucial for Snapin action on ACVI. In contrast, Snapin(Delta33-51), which harbors an internal deletion of amino acids 33-51 did not affect PKC-mediated inhibition of ACVI, supporting that amino acids 33-51 of Snapin comprises the ACVI-interacting region. Consistently, Snapin exerted no effect on PKC-mediated inhibition of an ACVI mutant (ACVI-DeltaA87), which lacked the Snapin-interacting region (amino acids 1-86). Snapin thus reverses its action via direct interaction with the N terminus of ACVI. Collectively, we demonstrate herein that in addition to its association with the SNARE complex, Snapin also functions as a regulator of an important cAMP synthesis enzyme in the brain.  相似文献   
3.
N-methyl-D-aspartate (NMDA) inhibits carbachol-stimulated phosphoinositide breakdown in rat brain cortical slices but not in isolated membranes (1). To gain insight into the mechanisms, we examined the effects of NMDA on carbachol-stimulated [3H]inositol phosphate and intermediates of phosphatidylinositol cycle accumulation in rat cortical slices. The inhibition is primarily on the synthesis of inositol phospholipids subsequent to activation of muscarinic cholinergic receptors. In the absence of lithium, NMDA inhibited carbachol-stimulated [32P]PtdIns but not [32P]PtdOH synthesis. Carbachol-stimulated CDP-DAG formation required trace amount of Ca2+ and the response was inhibited by NMDA at low but not high extracellular Ca2+ concentrations. The inhibition due to NMDA was only seen at millimolar extracellular Mg2+. The inhibition of carbachol-stimulated CDP-DAG formation was not affected by adding tetrodotoxin or cobalt chloride suggesting the inhibitory effect was not due to releasing of neurotransmitters. The inhibitory effects of NMDA could be abolished by MK-801, the specific NMDA receptor associated channel antagonist. When cortical slices were preincubated with ligands and lithium to allow the build up of CDP-DAG, carbachol stimulated the incorporation of [3H]Ins into [3H]PtdIns. However, this response was not inhibited by NMDA. These results suggest that CDP-DAG synthesis is the primary site of regulation by NMDA. Because CDP-DAG cytidyltransferase requires Mg2+ as cofactor and is sensitive to Ca2+ it is possible that NMDA inhibits ligand-stimulated PtdIns breakdown by blocking the replenish of agonist-sensitive PtdIns pool through changes of divalent cation homeostasis.  相似文献   
4.
Glycation, one of the post-translational modifications, is known to influence protein structure and biological function. Advanced glycation end products (AGEs) have been shown to cause pathologies of diabetes. Glycation levels in patients with Alzheimer's disease (AD) are higher than in normal people. However, whether the glycation of susceptible proteins is a triggering event for cell damage or simply a result remains to be elucidated. In this study, we demonstrated that ribose-conjugated BSA (Rib-BSA) directly induces PC12 cell death in a dose- and time-dependent manner. The IC(50) is 4.6?μM. Unlike glucose-incubated BSA, Rib-BSA rapidly forms cytotoxic AGEs. PC12 is vulnerable to Rib-BSA. However, fructose can induce AGE formation, although no effect on cell survival was observed. This effect of Rib-BSA is reversed by pretreatment of pioglitazone and rosiglitazone, which belongs to thiazolidinediones (TZDs) and are peroxisome proliferator-activated receptor (PPAR-γ) ligands. Moreover, Rib-BSA upregulates inducible nitric oxide synthase (iNOS), cycloxygenase 2 (COX-2) expression, and p-38 phosphorylation and leaves extracellular regulated protein1/2 (ERK1/2) phosphorylation unchanged. The Rib-BSA-induced signaling changes are blocked by rosiglitazone and confirmed by PPAR-γ small-interfering RNA transfection. The reduction of cell survival by Rib-BSA is blocked by the iNOS inhibitor and p38 inhibitor. No effect on cell survival was observed using the COX-2 inhibitor. Consequently, these results show that Rib-BSA directly inducing PC12 cell death is a triggering event and TZDs protect PC12 cell from Rib-BSA damage. Signaling molecules, such as PPAR-γ, P38, and iNOS, are involved in Rib-BSA-mediated cytotoxicity.  相似文献   
5.
Methamphetamine (METH) is an abusive psychostimulant that induces neuronal cell death/degeneration in experimental animals and humans. METH-induced apoptosis in rat pheochromocytoma cells was utilized to study the neurotoxic mechanism. During METH intoxication, we found that peroxiredoxins and thioredoxins/thioredoxin reductases (peroxiredoxin reducing systems) which are known to prevent oxidative stress and apoptosis were differentially downregulated and upregulated, respectively. We also found not only the free radicals but also the oxidative forms of peroxiredoxin and thioredoxin were increased, indicating the dysfunction of these enzymes. Thus, METH-induced differential regulation and oxidation of peroxiredoxins and thioredoxin may be an important mechanism for apoptosis.  相似文献   
6.
7.
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), an NF-kappaB inhibitor (pyrrolidine dithiocarbate), and an IkappaB protease inhibitor (L-1-tosylamido-2-phenylethyl chloromethyl ketone). The B1 BK receptor antagonist (Lys-(Leu8)des-Arg9-BK) had no effect on COX-2 induction by BK. BK-induced increase in COX-2-luciferase activity was inhibited by cells transfected with the kappaB site deletion of COX-2 construct. BK-induced Ras activation was inhibited by manumycin A. Raf-1 phosphorylation at Ser338 by BK was inhibited by manumycin A and GW 5074. BK-induced ERK activation was inhibited by HOE140, manumycin A, GW 5074, and PD 098059. Stimulation of cells with BK activated IkappaB kinase alphabeta (IKKalphabeta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex, and kappaB-luciferase activity. BK-mediated increase in IKKalphabeta activity and formation of the NF-kappaB-specific DNA-protein complex were inhibited by HOE140, a Ras dominant-negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Our results demonstrated for the first time that BK, acting through B2 BK receptor, induces activation of the Ras/Raf-1/ERK pathway, which in turn initiates IKKalphabeta and NF-kappaB activation, and ultimately induces COX-2 expression in human airway epithelial cell line (A549).  相似文献   
8.
H2O2 dose dependently inhibited dopamine uptake in PC12 cells and in striatal synaptosomes. Treatment with H2O2 resulted in a reversible reduction in Vmax, with no effect on its Km value. This suppressive effect of H2O2 could be relieved by reducing agents (dithiothreitol and cysteine). Furthermore, an oxidizer (dithiodipyridine) also markedly suppressed the dopamine transporter (DAT). Oxidative stress therefore might contribute to the action of H2O2. H2O2 appeared to modify DAT at both extracellular and intracellular sites because cumene-H2O2 (a radical generator mostly restricted to plasma membranes) at high concentrations also slightly suppressed DAT activity and the intracellular overexpression of catalase ameliorated the inhibitory effect of H2O2. Internalization was unlikely to be involved because concanavalin A, which blocked endocytosis, did not prevent the H2O2-evoked inhibition of DAT activity. Interestingly, H2O2 treatment evoked a Ca2+ influx in PC12 cells. Moreover, removal of external calcium by EGTA or reduction in the intracellular calcium level using BAPTA-AM reversed the inhibitory effect of H2O2. Conversely, depletion of intracellular calcium stores using thapsigargin did not affect the reduction in DAT activity by H2O2. Collectively, our results indicate that the DAT, one of the most important proteins controlling the dopaminergic system, is also a redox sensor. In addition, H2O2 might suppress the DAT by a Ca2+-dependent oxidative pathway.  相似文献   
9.
10.
To elucidate the regulation of the rat dopamine transporter (rDAT), we established several PC12 variants overexpressing the rDAT. Treating these cells with a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide, 30 microM) depolarized the plasma membrane potential from -31 +/- 2 to 43 +/- 5 mV and inhibited rDAT activity significantly in a calcium- and protein kinase C-independent manner. Membrane depolarization by a high external K+ concentration or two K+ channel blockers (tetraethylammonium hydroxide and BaCl2) also resulted in a marked inhibition of rDAT activity. Such inhibition of dopamine uptake is due to a reduction in Vmax, with no marked effect on the Km for dopamine. The potency of cocaine in inhibiting dopamine uptake was not significantly altered, whereas that of amphetamine was slightly enhanced by membrane depolarization. Removing extracellular Ca2+ or blocking the voltage-sensitive L-type calcium channels using nifedipine did not exert any significant effect on the inhibition of rDAT activity by depolarization. These data confirm that calcium influx on depolarization is not required for inhibition of the rDAT. Collectively, our data suggest that rDAT activity can be altered by a neurotransmitter that modulates the membrane potential, thus suggesting an exquisite mechanism for the fine-tuning of dopamine levels in the synapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号