首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2019年   2篇
  2014年   3篇
  2013年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
恶劣环境下,人工海防林因面临养分胁迫而经营困难。为探讨盐、磷胁迫对主要海防林树种木麻黄和台湾相思种子萌发及生长的影响,该研究分别用不同浓度的NaCl(盐)和KH2PO4(磷)溶液处理种子和浇灌幼苗,测定种子萌发和幼苗生长指标。结果表明:(1)高盐胁迫显著抑制种子萌发,对幼苗生长有一定影响,但两种植物影响程度不同;台湾相思种子萌发耐盐性高于木麻黄,前者相对盐害率最大值为23.03%,后者为89.15%;随着盐浓度增加,木麻黄和台湾相思种子的发芽率、发芽势、发芽指数和活力指数均降低,对应最大值分别为38.70%、34.67%、18.70、0.055和76.67%、62.22%、48.46、6.11。(2)两种植物的株高和根长随盐浓度增加而降低,木麻黄和台湾相思株高分别为12.29~6.01 mm和48.27~17.33 mm,根长分别为8.57~1.45 mm和33.41~5.88 mm;台湾相思根、茎、叶生物量及根冠比均随盐浓度的增加逐渐减小,木麻黄各处理差异较小。(3)台湾相思的种子和幼苗较木麻黄更耐低磷环境,二者最适磷浓度存在差异;木麻黄种...  相似文献   
2.
以感染内生真菌(endophyte-infected,EI)和不感染内生真菌(endophyte-free,EF)的高羊茅(Festuca arundinacea Schreb.)为材料,在温室沙培条件下研究内生真菌对高羊茅适应缺磷及利用不同形态磷肥的影响。结果表明,1)缺磷条件下,高羊茅EI和EF植株生长差异不显著;正常供磷条件下,高羊茅EI植株拥有更多分蘖数和绿叶数。说明正常供磷条件下内生真菌改善了宿主高羊茅的生长。2)与水溶性磷相比,高羊茅根有机酸和酸性磷酸酶(acid phosphatase,APase)活性在难溶性磷条件下显著增加,而根总酚含量无显著变化。在水溶性磷条件下,高羊茅EI植株根总酚含量显著高于EF植株,此时EI植株比EF植株拥有更多分蘖数和绿叶数,说明在水溶性磷条件下内生真菌对宿主地上部生长具有一定贡献。在难溶性磷条件下,虽然高羊茅EI植株根总酚含量仍然高于EF植株,但同时EI植株根有机酸含量显著低于EF植株,因此内生真菌感染只是增大了宿主植物的根冠比,而对分蘖数和绿叶数等无显著影响,说明内生真菌对宿主利用难溶性磷贡献不大。可见,内生真菌对宿主植物的生长在水溶性磷条件下更有利。  相似文献   
3.
Bazhen decoction is a widely used traditional Chinese medicinal decoction, but the scientific validation of its therapeutic potential is lacking. The objective of this study was to investigate corresponding anti-oxidative, anti-inflammatory and anti-apoptosis activities of Bazhen decoction, using acetaminophen-treated mice as a model system. A total of 48 mice were divided into four groups. Group I, negative control, treated with vehicle only. Group II, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days. Group III, received a single dose of 900 mg/kg acetaminophen. Group IV, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days and a single dose of 900 mg/kg acetaminophen 30 min before last Bazhen decoction administration. Bazhen decoction administration significantly decrease acetaminophen-induced serum ALT, AST, ALP, LDH, TNF-α, IL-1β, ROS, TBARS and protein carbonyl group levels, as well as GSH depletion and loss of MMP. Bazhen decoction restore SOD, CAT, GR and GPx activities and depress the expression of pro-inflammatory factors, such as iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6, respectively. Moreover, Bazhen decoction down-regulate acetaminophen-induced Bax/Bcl-2 ratio, caspase 3, caspase 8 and caspase 9. These results suggest the anti-oxidative, anti-inflammatory and anti-apoptosis properties of Bazhen decoction towards acetaminophen-induced liver injury in mice.  相似文献   
4.
为探究施盐和磷对重要海防林树种台湾相思幼苗叶光合作用与养分特征的影响,该研究设置0%(B0)、0.2%(B1)、0.4%(B2)、0.6%(B3)、0.8%(B4)的NaCl溶液和0 (P0)、0.5 (P1)、1.5 (P2)g·kg-1 3个供磷水平的过磷酸钙磷肥,在此基础上设置盐磷6个耦合处理,测定幼苗光合作用和养分特征指标。结果表明:(1)盐胁迫显著抑制台湾相思幼苗的生长发育,盐含量越高影响程度越大;低盐施磷对台湾相思幼苗生长不利,中高盐施磷显著减缓盐对幼苗生长的抑制作用。(2)台湾相思幼苗光合作用受盐胁迫影响显著;中低盐施磷后气孔关闭程度上升会加剧盐胁迫对幼苗光合作用的影响,高盐适当施磷可显著提高台湾相思幼苗光合能力。(3)盐胁迫显著降低叶绿素含量且对光系统Ⅱ造成危害;低盐胁迫施磷对台湾相思幼苗叶绿素合成不利,高盐适当施磷可以提高叶绿素合成量、稳定细胞膜结构以及提高叶片潜在光合能力...  相似文献   
5.
Rechargeable Li‐ion batteries (LIBs) are electrochemical storage device widely applied in electric vehicles, mobile electronic devices, etc. However, traditional LIBs containing liquid electrolytes suffer from flammability, poor electrochemical stability, and limited operational temperature range. Replacement of the liquid electrolytes with inorganic solid‐state electrolytes (SSEs) would solve this problem. However, several critical issues, such as poor interfacial compatibility, low ionic conductivity at ambient temperatures, etc., need to be surmounted before the commercialization of all‐solid‐state Li‐ion batteries (ASSLIBs). In this review, a brief historical context for the inorganic SSEs is described first. Then, two critical issues in the ASSLIBs are highlighted: interfacial incompatibility of the electrodes and SSEs and internal stresses. For the interfacial incompatibility, the discussion is focused on the dynamic characterization of the electrode/SSE interfaces, the origin and evolution of the interfacial resistance, and interface engineering to minimize the interfacial resistance. The internal stresses in the ASSLIBs are another major concern because rigid contacts are introduced. Stress generation, stress evolution during battery cycling, stress measurement/simulation, and ways to alleviate the stresses are outlined in detail. Finally, current challenges and perspectives for future development of the inorganic SSEs and ASSLIBs are outlined.  相似文献   
6.
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.  相似文献   
7.
Zhao  Liang  Zhang  Chuanyang  Cao  Guilin  Dong  Xueyi  Li  Dongliang  Jiang  Lei 《Neurochemical research》2019,44(11):2506-2516

Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote oxidative stress and inflammation in the peripheral tissues, contributing to the pathogenesis of many diseases. Here we examined whether pre-existing higher circulating TMAO would influence cognitive function in aged rats after anesthetic sevoflurane exposure. Aged rats received vehicle or TMAO treatment for 3 weeks. After 2 weeks of treatment, these animals were exposed to either control or 2.6% sevoflurane for 4 h. One week after exposure, freezing as measured by fear conditioning test, microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent reactive oxygen species (ROS) production in the hippocampus (a key brain structure involved in learning and memory) were comparable between vehicle-treated rats exposed to control and vehicle-treated rats exposed to sevoflurane. TMAO treatment, which increased plasma TMAO before and 1 week after control or sevoflurane exposure, significantly reduced freezing to contextual fear conditioning, which was associated with increases in microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent ROS production in the hippocampus in rats exposed to sevoflurane but not in rats exposed to control. Moreover, hippocampal expression of antioxidant enzyme methionine sulfoxide reductase A (MsrA) was reduced by TMAO treatment in both groups, and TMAO-induced reduction in MsrA expression was negatively correlated with increased proinflammatory cytokine expression in rats exposed to SEV. These findings suggest that pre-existing higher circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may sensitize the hippocampus to oxidative stress, resulting in microglia-mediated neuroinflammation and cognitive impairment in aged rats after sevoflurane exposure.

  相似文献   
8.

Aims

This study was designed to investigate the protective effects of selenium supplementation on patulin-induced neurotoxicity.

Main methods

Mice were subjected to patulin for 8 weeks. Sodium selenite (Na2SeO3) and selenium–methionine (Se–Met) were supplemented with the diet, and we investigated the effects of selenium on patulin-induced neurotoxicity. The animals were randomly divided into 4 groups containing 6–8 mice each. The first group was used as a control, and only physiological saline (0.9%) was injected. The second group was treated with patulin (1 mg/kg) intraperitoneally. The third group was treated with patulin (1 mg/kg) along with a dietary supplementation of Na2SeO3 (0.2 mg Se/kg of diet). The fourth group was treated with patulin (1 mg/kg) plus Se–Met (0.2 mg Se/kg of diet).

Key findings

Patulin treatment increased oxidative damage in the brain, as evidenced by a decrease in non-protein thiol and total thiol groups, along with significant increases in GSSG, reactive oxygen species, thiobarbituric acid reactive substances and protein carbonyl levels. Moreover, the activities of glutathione peroxidase (GPx) and glutathione reductase were inhibited with patulin treatment. Selenium supplementation significantly ameliorated these biological parameter changes. In addition, selenium treatments significantly increased the mRNA levels of GPx-1, GPx-4 and thioredoxin reductase.

Significance

Our data show that selenium supplementation increases the activity and expression of glutathione-related enzymes and offers significant protection against brain damage induced by patulin.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号