首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6161篇
  免费   553篇
  国内免费   3篇
  2023年   24篇
  2022年   55篇
  2021年   118篇
  2020年   82篇
  2019年   109篇
  2018年   133篇
  2017年   102篇
  2016年   161篇
  2015年   282篇
  2014年   347篇
  2013年   404篇
  2012年   529篇
  2011年   463篇
  2010年   332篇
  2009年   331篇
  2008年   415篇
  2007年   412篇
  2006年   348篇
  2005年   329篇
  2004年   324篇
  2003年   343篇
  2002年   273篇
  2001年   69篇
  2000年   53篇
  1999年   61篇
  1998年   63篇
  1997年   51篇
  1996年   26篇
  1995年   29篇
  1994年   19篇
  1993年   27篇
  1992年   28篇
  1991年   33篇
  1990年   24篇
  1989年   30篇
  1988年   16篇
  1987年   20篇
  1986年   13篇
  1985年   19篇
  1984年   22篇
  1983年   19篇
  1981年   21篇
  1979年   21篇
  1978年   9篇
  1977年   12篇
  1976年   16篇
  1975年   13篇
  1974年   9篇
  1973年   10篇
  1971年   14篇
排序方式: 共有6717条查询结果,搜索用时 31 毫秒
1.
Context-specific calls, which have a distinct acoustic structure and are selectively produced in specific contexts, are a prerequisite for calls that function referentially. Functionally referential calls, which convey information to conspecifics about objects and events in the external world, have been found in a number of species, notably primates. Evidence of context-specific calls in apes, however, is largely absent. We analysed whether the barks of wild male chimpanzees in the Ta? Forest, Côte d'Ivoire, are context specific. We examined the acoustic structure of barks, and other calls produced in association with barks, in six contexts, using discriminant function analysis. Chimpanzees produced context-specific signals in two ways. First, they produced two acoustically graded bark subtypes, in hunt and snake contexts, respectively. Second, they produced context-specific signal combinations of barks with acoustically different call types or drums. These signal combinations increased specificity levels in three of the six contexts to over 90%, a level similar to the classic vervet monkey, Cercophithecus aethiops, predator alarm calls. Furthermore, specific chimpanzee signals were produced in contexts other than alarm, such as travel and hunting, where the potential benefits of evolving specific calls are less obvious. These signals may convey specific context information to listeners, and thus function referentially; however, to confirm this, analyses of listeners' responses are required. The results show that two strategies for producing context-specific signals seem to have evolved in a species other than humans: chimpanzees produce context-specific bark subtypes and context-specific signal combinations. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   
2.
3.
The rapid changes in TRH levels in the rat pancreas during the neonatal period make this organ an interesting model for the study of the regulation of TRH biosynthesis. Pancreatic RNAs were isolated by the guanidinium thiocyanate method and layered onto CsCl cushion. Northern blot preparations were hybridized with 32P labeled TRH cDNA probe. Pancreatic TRH mRNA was first detected in 19-day old fetuses and reached the highest level on day 0, then decreased, being barely detectable 14 days after birth. The neonatal injection of streptozotocin induced a dramatic drop of TRH mRNA levels 24 hours later. This result suggests that the peculiar evolution of TRH level in pancreas is partly due to the evolution of the expression of the TRH gene.  相似文献   
4.
5.
6.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.  相似文献   
7.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient''s age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.  相似文献   
8.
Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号