首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   23篇
  232篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   19篇
  2014年   14篇
  2013年   13篇
  2012年   13篇
  2011年   17篇
  2010年   12篇
  2009年   6篇
  2008年   8篇
  2007年   18篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
1.
2.
Research needs a balance of risk‐taking in “breakthrough projects” and gradual progress. For building a sustainable knowledge base, it is indispensable to provide support for both. Subject Categories: Careers, Economics, Law & Politics, Science Policy & Publishing

Science is about venturing into the unknown to find unexpected insights and establish new knowledge. Increasingly, academic institutions and funding agencies such as the European Research Council (ERC) explicitly encourage and support scientists to foster risky and hopefully ground‐breaking research. Such incentives are important and have been greatly appreciated by the scientific community. However, the success of the ERC has had its downsides, as other actors in the funding ecosystem have adopted the ERC’s focus on “breakthrough science” and respective notions of scientific excellence. We argue that these tendencies are concerning since disruptive breakthrough innovation is not the only form of innovation in research. While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science. This is problematic since, paradoxically, breakthrough potential in science builds on gradual innovation. If the value of gradual innovation is not better recognized, the potential for breakthrough innovation may well be stifled.
While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science.
Concerns that the hypercompetitive dynamics of the current scientific system may impede rather than spur innovative research have been voiced for many years (Alberts et al, 2014). As performance indicators continue to play a central role for promotions and grants, researchers are under pressure to publish extensively, quickly, and preferably in high‐ranking journals (Burrows, 2012). These dynamics increase the risk of mental health issues among scientists (Jaremka et al, 2020), dis‐incentivise relevant and important work (Benedictus et al, 2016), decrease the quality of scientific papers (Sarewitz, 2016) and induce conservative and short‐term thinking rather than risk‐taking and original thinking required for scientific innovation (Alberts et al, 2014; Fochler et al, 2016). Against this background, strong incentives for fostering innovative and daring research are indispensable.  相似文献   
3.
E from individuals with the Inab blood group phenotype have an isolated deficiency of decay accelerating factor (DAF, CD55). DAF is a glycosyl phosphatidylinositol anchored membrane protein that inhibits activation of both the classical and alternative pathways of complement. Deficiency of DAF from the E of paroxysmal nocturnal hemoglobinuria (PNH) is thought to contribute to their greater sensitivity to complement-mediated lysis. Unlike PNH E, however, Inab cells are not susceptible to acidified serum lysis, a process that is mediated through activation of the alternative pathway. This observation led us to hypothesize that membrane constituents other than DAF control susceptibility to acidified serum lysis. To investigate this hypothesis, Inab E were incubated in acidified serum, and hemolysis and C3 deposition (as a measure of alternative pathway activation) were quantitated. C3 deposition of Inab cells was approximately 20 times greater than normal, however, hemolysis was not observed. Inab E expressed a normal amount of membrane inhibitor of reactive lysis (MIRL, CD59), a glycosyl phosphatidylinositol anchored protein that is also deficient in PNH. When MIRL function was blocked with antibody, C3 deposition markedly increased, and 100% of the Inab cells hemolyzed in acidified serum. These studies demonstrate that susceptibility to acidified serum lysis is controlled primarily by MIRL, and that in addition to its regulatory affect on the membrane attack complex, MIRL also modulates the activity of the C3 convertase of the alternative pathway by a mechanism that remains to be determined.  相似文献   
4.
Infectious intracellular and extracellular forms of vaccinia virus have different outer membrane proteins, presenting multiple targets to the immune system. We investigated the immunogenicity of soluble forms of L1, an outer membrane protein of the intracellular mature virus, and of A33 and B5, outer membrane proteins of the extracellular enveloped virus. The recombinant proteins, in 10-microg amounts mixed with a Ribi- or saponin-type adjuvant, were administered subcutaneously to mice. Antibody titers to each protein rose sharply after the first and second boosts, reaching levels that surpassed those induced by percutaneous immunization with live vaccinia virus. Immunoglobulin G1 (IgG1) antibody predominated after the protein immunizations, indicative of a T-helper cell type 2 response, whereas live vaccinia virus induced mainly IgG2a, indicative of a T-helper cell type 1 response. Mice immunized with any one of the recombinant proteins survived an intranasal challenge with 5 times the 50% lethal dose of the pathogenic WR strain of vaccinia virus. Measurements of weight loss indicated that the A33 immunization most effectively prevented disease. The superiority of protein combinations was demonstrated when the challenge virus dose was increased 20-fold. The best protection was obtained with a vaccine made by combining recombinant proteins of the outer membranes of intracellular and extracellular virus. Indeed, mice immunized with A33 plus B5 plus L1 or with A33 plus L1 were better protected than mice immunized with live vaccinia virus. Three immunizations with the three-protein combination were necessary and sufficient for complete protection. These studies suggest the feasibility of a multiprotein smallpox vaccine.  相似文献   
5.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   
6.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   
7.
Though the vascular endothelial growth factor coreceptor neuropilin-1 (Nrp1) plays a critical role in vascular development, its precise function is not fully understood. We identified a group of novel binding partners of the cytoplasmic domain of Nrp1 that includes the focal adhesion regulator, Filamin A (FlnA). Endothelial cells (ECs) expressing a Nrp1 mutant devoid of the cytoplasmic domain (nrp1cytoΔ/Δ) migrated significantly slower in response to VEGF relative to the cells expressing wild-type Nrp1 (nrp1+/+ cells). The rate of FA turnover in VEGF-treated nrp1cytoΔ/Δ ECs was an order of magnitude lower in comparison to nrp1+/+ ECs, thus accounting for the slower migration rate of the nrp1cytoΔ/Δ ECs.  相似文献   
8.
9.
10.
The breast and ovarian cancer susceptibility gene BRCA1 plays a major role in the DNA damage response pathway. The lack of well-characterized human BRCA1-null cell lines has limited the investigation of BRCA1 function, particularly with regard to its role in ovarian cancer. We propagated a novel BRCA1-null human ovarian cancer cell line UWB1.289 from a tumor of papillary serous histology, the most common form of ovarian carcinoma. UWB1.289 carries a germline BRCA1 mutation within exon 11 and has a deletion of the wild-type allele. UWB1.289 is estrogen and progesterone receptor negative and has an acquired somatic mutation in p53, similar to the commonly used BRCA1-null breast cancer cell line HCC1937. We used ionizing radiation to induce DNA damage in both UWB1.289 and in a stable UWB1.289 line in which wild-type BRCA1 was restored. We examined several responses to DNA damage in these cell lines, including sensitivity to radiation, cell cycle checkpoint function, and changes in gene expression using microarray analysis. We observed that UWB1.289 is sensitive to ionizing radiation and lacks cell cycle checkpoint functions that are a normal part of the DNA damage response. Restoration of wild-type BRCA1 function in these cells partially restores DNA damage responses. Expression array analysis not only supports this partial functional correction but also reveals interesting new information regarding BRCA1-positive regulation of the expression of claudin 6 and other metastasis-associated genes and negative regulation of multiple IFN-inducible genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号