首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   100篇
  2023年   4篇
  2022年   14篇
  2021年   15篇
  2020年   10篇
  2019年   17篇
  2018年   29篇
  2017年   22篇
  2016年   37篇
  2015年   64篇
  2014年   57篇
  2013年   78篇
  2012年   91篇
  2011年   96篇
  2010年   44篇
  2009年   49篇
  2008年   75篇
  2007年   82篇
  2006年   68篇
  2005年   50篇
  2004年   59篇
  2003年   69篇
  2002年   55篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
排序方式: 共有1137条查询结果,搜索用时 93 毫秒
1.
Abstract We present a regional fuel load model (1 km2 spatial resolution) applied in the southern African savanna region. The model is based on a patch-scale production efficiency model (PEM) scaled up to the regional level using empirical relationships between patch-scale behavior and multi-source remote sensing data (spatio-temporal variability of vegetation and climatic variables). The model requires the spatial distribution of woody vegetation cover, which is used to determine separate respiration rates for tree and grass. Net primary production, grass and tree leaf death, and herbivory are also taken into account in this mechanistic modeling approach. The fuel load model has been calibrated and validated from independent measurements taken from savanna vegetation in Africa southward from the equator. A sensitivity analysis on the effect of climate variables (incoming radiation, air temperature, and precipitation) has been conducted to demonstrate the strong role that water availability has in determining productivity and subsequent fuel load over the southern African region. The model performance has been tested in four different areas representative of a regional increasing rainfall gradient—Etosha National Park, Namibia, Mongu and Kasama, Zambia, as well as in Kruger National Park, South Africa. Within each area, we analyze model output from three different magnitudes of canopy coverage (<5, 30, and 50%). We find that fuel load ranges predicted by the model are globally in agreement with field measurements for the same year. High rainfall sustains green herbaceous production late in the dry season and delays tree leaf litter production. Effect of water on production varies across the rainfall gradient with delayed start of green material production in more arid regions.  相似文献   
2.
Abstract: Stimulation of several second messenger pathways induces the expression of immediate early genes such as c- fos , c- jun , junB , and junD , but little is known about their induction via the stimulation of the cyclic GMP pathway. Here we looked at the expression of early genes in pheochromocytoma PC12 cells after activation of cytosolic guanylate cyclase by sodium nitroprusside. This compound spontaneously releases NO, a molecule known to be involved in cell communication. We found that expression of c- fos and junB but not of c- jun or junD is increased upon activation of cyclic GMP pathway. c- fos mRNA expression was the most activated (fourfold at 30 min), whereas junB response was more modest (2.2-fold activation at 60 min). Nuclear extracts of stimulated cells show increased binding capacity to the AP1 binding site consistent with the dose-response curve. The activating effect of nitroprusside could be reproduced by dipyridamole, a selective cyclic GMP phosphodiesterase inhibitor and by 8- p -chlorophenylthio-cyclic GMP, a permeant selective cyclic GMP-dependent protein kinase activator, and abolished by KT5823, an inhibitor of that kinase. The results show that NO promotes early gene activation and AP1 binding enhancement through the stimulation of the cyclic GMP pathway.  相似文献   
3.
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.  相似文献   
4.
5.
    
In order to study the physiological role of aminopeptidase A (APA),several -mercapto--amino acyl dipeptides were synthesized toobtain compounds having a high affinity for APA and a high selectivityversus aminopeptidase N (APN). Sulfonamide and carboxylate moieties whichhave been shown to be recognized by the S1 subsite of theenzyme were introduced on the side chain of the -mercapto--aminoacyl sub-unit, the latter being coupled to dipeptides optimized to interactwith the S1 andS2 subsites by means of combinatorialchemistry. Good affinities (16 nM) were obtained, the selectivity factorsbeing up to 160-fold versus APN.  相似文献   
6.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

7.
Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αβ T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1β and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.  相似文献   
8.
Gadolinium-based contrast agents are widely used to enhance image contrast in magnetic resonance imaging (MRI) procedures. Over recent years, there has been a renewed interest in the physicochemical properties of gadolinium chelates used as contrast agents for MRI procedures, as it has been suggested that dechelation of these molecules could be involved in the mechanism of a recently described disease, namely nephrogenic systemic fibrosis (NSF). The aim of this paper is to discuss the structure-physicochemical properties relationships of marketed gadolinium chelates in regards to their biological consequences. Marketed gadolinium chelates can be classified according to key molecular design parameters: (a) nature of the chelating moiety: macrocyclic molecules in which Gd3+ is caged in the pre-organized cavity of the ligand, or linear open-chain molecules, (b) ionicity: the ionicity of the complex varies from neutral to tri-anionic agents, and (c) the presence or absence of an aromatic lipophilic residue responsible for protein binding. All these molecular characteristics have a profound impact on the physicochemical characteristics of the pharmaceutical solution such as osmolality, viscosity but also on their efficiency in relaxing water protons (relaxivity) and their biodistribution. These key molecular parameters can also explain why gadolinium chelates differ in terms of their thermodynamic stability constants and kinetic stability, as demonstrated by numerous in vitro and in vivo studies, resulting in various formulations of pharmaceutical solutions of marketed contrast agents. The concept of kinetic and thermodynamic stability is critically discussed as it remains a somewhat controversial topic, especially in predicting the amount of free gadolinium which may result from dechelation of chelates in physiological or pathological situations. A high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) will minimize the amount of free gadolinium released in tissue parenchymas.  相似文献   
9.
10.
Cronje C  George GM  Fernie AR  Bekker J  Kossmann J  Bauer R 《Planta》2012,235(3):553-564
Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff–Wheeler pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号