首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2016年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1989年   1篇
  1979年   1篇
排序方式: 共有17条查询结果,搜索用时 62 毫秒
1.
Photosynthetic assimilation of 14CO2 was examined in leaves of potato (Solanum tuberosum L.) plants that were grown under direct sunlight and then transferred to 50% irradiance for various periods. The rate of 14CO2 assimilation correlated with light intensity: the photosynthetic rate reduced by 52% after 5-day shading and by 70% after 30-min shading. In all shaded and shade-adapted plants, the sucrose/hexose ratio decreased by a factor of 3.5–4.1; furthermore, the radioactivity of glycolate cycle metabolites and the serine/glycine ratio were lowered. In plants shaded for 5 days or 30 min, the radioactivity of aspartate and malate was higher than at continuous high irradiance, especially in plants shaded for 30 min, whereas a sudden illumination of the shaded plants reduced the radioactivity of these substances. We suppose that low irradiance averted the reentry of glycolate path carbon into the Calvin cycle and redirected this carbon source for the production of four-carbon acids that acidified the apoplast. This acidification activated the apoplastic invertase, which enhanced sucrose hydrolysis and hindered the sucrose export from the leaf. Hydrolysis of sucrose promoted the increase in osmolarity of the apoplastic solution, this increase being stronger at close distances to the stomatal pores where water is intensely evaporated. The increase in osmolarity of extracellular medium led to closing of stomata and the suppression of photosynthesis.  相似文献   
2.
Solutions of sodium nitroprusside, a nitric oxide donor, were introduced at various concentrations into common flax (Linum usitatissimum L.) shoots with the transpirational water flow. Sodium nitroprusside and nitrate were found to exert similar effects on incorporation of 14C into photosynthetic products, leaf cell ultrastructure, and the export of assimilates from leaves. The results suggest that export of assimilates from leaves might be regulated by the products of incomplete nitrate reduction and that regulation may involve the NO-signaling system.  相似文献   
3.
We studied assimilation of 14СО2 and distribution of 14С among the products of 3-min-long photosynthesis of maize (Zea mays L.) leaves. The day before the experiment, half of the plants were fertilized with Ca(NO3)2 (1 g/L of water) at a rate of 6 L/m2. Five days before the experiment, some plants were shaded for adaptation (illuminance was reduced by 50%). On the day of the experiment (before the application of 14СО2), several shaded plants were exposed to direct sunlight for 3 min, and some plants grown at full light (light plants) were shaded for 3 min (illuminance of 50%). Unfertilized plants adapted for 5 days to shading showed photosynthesis of 75.9% of control level (full light). If light plants were transferred to shading for 3 min, their photosynthesis decreased to 42.1%. In plants shaded for 5 days and then transferred to full light, photosynthesis in 3 min was 96.3% of control level. At full light, fertilization with nitrate boosted photosynthesis to 132.6% as compared with control material, but photosynthesis decreased to 43.5 and 65.4% of control level in plants shaded for 5 days and those shaded for 3 min, respectively. At the same time, the plants shaded for 5 days and then exposed for 3 min to full light restored photosynthesis to almost control level (95.5%). Analysis of 14С distribution among the products of 3-min-long photosynthesis showed that, the same as in C3 plants, a decrease in illuminance (especially a sudden one) in maize reduced the ratio between labeled sucrose and hexoses and elevates incorporation of 14С into malate, which indicated that its consumption in bundle sheath cells was suppressed. A decrease in the ratio between labeled sucrose and hexoses became more pronounced under the influence of nitrates with this effect also occurring in transport products of photosynthesis (20 cm below 14С-providing leaf area). In plants fertilized with nitrates, radioactivity of sucrose (% of radioactivity of soluble compounds) decreased in all the types of illumination. When illuminance was suddenly reduced for 3 min, incorporation of 14С into sucrose was 21.5 against 51.2% in light plants, and radioactivity of aspartate and malate sharply rose to 13.7 and 26.1% (against 2.1 and 8.9% in control material). Incorporation of 14С into compounds of glycolate pathway was low (less than 2.5%), but it was somewhat greater in nitrate plants. We concluded that the same mechanism of interaction between stomatal apparatus of leaf epidermis, invertase of mesophyll apoplast, and photosynthetic metabolism of carbon with electron flux via electron transport chain in chloroplasts of bundle sheath cells, which governs the rate of photosynthesis and assimilate export from the leaf but is triggered by the extent of consumption in the bundle sheath cells of C4 acids produced in the mesophyll operates in C4 plants (the same as in C3 plants).  相似文献   
4.
The distribution of 14C in various tissues of fiber flax was assayed 1, 17, and 21 days after 30-min assimilation of 14CO2 by the whole rapidly growing plant. Polymeric photosynthetic products were largely hydrolyzed in the 14C-donor part of the shoot, and the hydrolysates were transported upward. The content of 14C in pigments and lipids of the donor leaves (that absorbed 14CO2) was significantly higher than that in the 14C-acceptor leaves. Additional nitrogen nutrition decreased the labeled sucrose-to-hexose ratio and inhibited transport of the assimilates from both 14C-donor and acceptor leaves. 14C transported to the shoot tip was largely used for the synthesis of poorly soluble proteins (extractable with alkali and Triton X-100) in the acceptor tissues. In the donor part of the shoot, particularly in the bast, cellulose was mainly synthesized from the new assimilates.  相似文献   
5.
The content of 14C in the products of photosynthesis of the source leaf and xylem sap was investigated in kidney bean (Phaseolus vulgaris L.) plants during the stage of mass tillering. 14C partition was measured a day after two-minute photoassimilation of 14CO2 by an individual mature leaf located in the middle part of the shoot. The source-sink relations were disturbed by the excision of all mature leaves (except the source leaf) or all growing axillary shoots. The leaves or growing axillary shoots were excised 15 min after leaf feeding with 14C2. A day later, in plants with excised growing axillary shoots, the content of 14C in the source leaf was by 18% higher and in those with removed leaves by 15% lower than in control plants. The next day after the excision of growing axillary shoots, radioactivity of the xylem sap increased; after defoliation, both the volume of the xylem sap and its specific radioactivity decreased. In the xylem sap of defoliated plants, the proportion of 14C in malate decreased more than six times, whereas the proportion of 14C in amino acids somewhat increased (1.5 times). In two days, the volume of the xylem sap exuded by treated plants became the same as in control plants and its radioactivity decreased almost by an order of magnitude but essentially did not differ in the both types of treatment. It is concluded that the processes occurring in the roots are governed by photosynthesis but its regulatory effect is limited by a photoperiod and largely depends on changes in the ratio between biosynthesis of amino acids in the roots and leaves.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 518–521.Original Russian Text Copyright © 2005 by Chikov, Bakirova, Batasheva, Sergeeva.  相似文献   
6.
The concepts of photosynthesis role in the production process underwent evolution from the initial assumption of complete identity of these terms to the notion that photosynthesis is only a supplier of assimilates for sink organs. The following issues are discussed as individual stages of problem resolution: whether or not photosynthesis restricts productivity; what is the contribution of chlorophyll-containing non-leaf organs to the production process; what are the roles of photooxidation processes and source-sink relations between photosynthesizing organs and assimilate consumers; how the apoplast is involved in regulation of photosynthetic function of the whole plant; and what is the role of nitrate in control of photosynthesis and assimilate export from the leaf. Finally, the distribution of assimilates among the sink organs and the role of competition among the organs in regulation of photosynthesis and yield formation are considered.  相似文献   
7.
We studied the influence of yeast invertase gene (inv), with the apoplastic localization of the enzyme, on photosynthesis of potato plants (Solanum tuberosum L., cv. Desiree) grown at various irradiances. Plants were raised in vitro, planted in soil in gauze-insulated stands, and grown at irradiances of 100, 200, and 380 W/m2 of photosynthetically active radiation. Wild-type plants (WT) and the plants transformed with yeast invertase gene (B33-inv) were used. In the beginning of flowering stage, assimilation of 14CO2 and 14C incorporation into photosynthates were measured. Irrespective of irradiance, the carbon assimilation was higher in WT plants, than in transformed B33-inv plants. In the plants studied, we observed divergent light dependences of 14C inclusion into sucrose: the highest labeling was observed at low irradiance in WT plants and at high irradiance in B33-inv transformed plants. The content of 14C incorporated into amino acids changed in the opposite direction compared to 14C incorporation into sucrose. Irrespective of the plant type, similar light dependences were observed for 14C content in the products of glycolate metabolism and in glycerate. At the intermediate irradiance, the patterns of 14C distribution among photosynthetic products showed minimal differences between the plants of two types. The role of apoplast invertase in sugar export from the leaf and the possible control of plant productivity through this enzyme activity are discussed.  相似文献   
8.
Labeled glucose solution was introduced into cut fiber flax plants (45–50 cm high) under a pressure of 0.1 bar for 30 min, 1, and 2 h using a special device. The highest quantities of labeled carbon were revealed in the woody tissue. Sucrose made up a considerable proportion in low molecular weight products of [2-14C]-glucose transformation (23.5%). Metabolism of labeled glucose in the leaves exposed to sunlight yielded a set of metabolites similar to products of 14CO2 photoassimilation. In the shade, the pattern of 14C distribution in labeled compounds of the alcohol/water soluble fraction was similar to that in the light in mature leaves; while in juvenile leaves, 14C content decreased in sucrose and increased in organic and amino acids. In the shade, the incorporation of 14C into starch and hot water soluble polysaccharides increased at the expense of the acetone fraction (lipids and pigments), water/salt soluble proteins, and cellulose. Low light conditions increased the radioactivity ratio of sparingly soluble (KOH and Triton X-100 soluble) proteins to albumins and globulins. We propose that the synthesis of components of the photosynthetic apparatus in juvenile leaves is directly powered by photosynthesis and the photosynthesis of sucrose and the polymers compete for photosynthetic ATP. Appearance of sucrose in the xylem is due to its release from the phloem to the stem apoplast and the radial transfer to the xylem, where it is transported to the upper part of the shoot with the transpiration stream.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 3, 2005, pp. 294–299.Original Russian Text Copyright © 2005 by Chikov, Avvakumova, Bakirova, Khamidullina.  相似文献   
9.
Using water infiltration of the plant and individual shoots with the subsequent intercellular liquid extraction by the pressure chamber, dynamics of the movement 14C-photosynthates from cell to apoplast, and 14C distribution among photosynthetic products in mesophyll cells and apoplast were studied. The relative quantity of 14C-photosynthetes in leaf apoplast depended on growing conditions; drought increased, and nitrate supply decreased it. When the middle leaves absorbed 14CO2, photosynthates moving down in stem phloem appeared in intercellular space, where they were transported up by transpiration stream. 14C-photosynthates entering to the apex and young leaves were utilized a accumulated, and photosynthates transported to the mature leaves were reloaded into the phloem and reexported. Thus, photosynthates circulated through the plant and were redistributed to the plant organs according to their transpiration. In leaf apoplast photosynthetic sucrose was partly hydrolyzed to glucose and fructose. This increased under high nitrogen supply. The result indicate that apoplast sucrose hydrolysis is the basic cause of the reduction of photosynthate flux from leaves when the nitrate concentration in soil increases.  相似文献   
10.
Solutions of nitrates (0.5% KNO3, 0.2% NH4NO3) or urea (0.15%) were fed under the pressure of 104 Pa to 50–60-cm-long detached shoots of common flax (Linum usitatissimum L.). One hour after the start of supplying the solutions, an assimilation clip chamber was fastened to the middle part of the shoot (14C source area), and 14CO2 was blown through in the light for 2.5 min. The analysis of distribution of 14C among the labeled products of photosynthesis produced by source leaves showed that nitrates reduced the incorporation of the label into sucrose. At the same time, the ratio of labeled sucrose to labeled hexoses decreased, and the incorporation of the label into serine greatly increased. Urea did not produce such effects. The pattern of distribution of 14C within the plant 3 h after the assimilation of 14CO2 points to the suppression of assimilate efflux from the leaves of plants fed with nitrates. In plants supplied with water or urea, 17–20% of labeled carbon was found below the 14C source area of the shoot, in nitrate type of treatment, only 3–5% was found there. In plants supplied with nitrates, the cortex tissue below the source leaf contained more 14C in proteins and less in low-molecular substances. In the wood tissue, such a correlation was not observed. When the shoot was supplied with water or urea, the content of 14C in sucrose in the source leaves in 3 h declined from 55–60% to 38–42%. When the shoot was fed with nitrates, the share of label in sucrose increased from 50 to 62–73%. Autoradiography of the source leaves showed that, in plants supplied with water or urea, the label was predominantly accumulated in large vascular bundles, and in nitrate type of treatment, it was accumulated outside large bundles. Electron microscopy showed that, in nitrate plants, the companion cells of phloem endings were very much vacuolated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号