首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A method for analyzing carotenoid content in Haematococcus pluvialis, a green alga was developed using digital image processing (DIP) and an artificial neural network (ANN) model. About 90 images of algal cells in various phases of growth were processed with the tools of DIP. A good correlation of R(2)=0.967 was observed between carotenoid content as estimated by analytical method and DIP. Similar correlation was also observed in case of chlorophyll. Since the conventional methods of carotenoid estimation are time consuming and result in loss of pigments during analysis, DIP method was found to be an effective online monitoring method. This method will be useful in measurement of pigments in cultured cells.  相似文献   
2.
Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.  相似文献   
3.
Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn2+ to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn2+. This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer’s patient.  相似文献   
4.
Alzheimer’s disease (AD) is a most common form of dementia caused due to aggregation of amyloid beta (Aβ) peptides in brain. The AD brain exhibits extracellular deposition of Aβ-peptides which triggers neuronal death. Thus, degradation of Aβ peptides has evaluated a promising therapeutic target in AD. Human endothelin converting enzyme (hECE-1) has been implicated in Aβ-peptide degradation. In this study, we have performed molecular docking between three different conformations of Aβ peptides and hECE-1 coupled with molecular dynamics to investigate subsite recognition and cleavage mechanism. Molecular docking and MD simulation studies show that β-sheet conformation with particular orientation of Aβ-peptide residues selectively entrap in substrate binding cavity of hECE-1. However, unusual orientation of Aβ-peptide residues and helical conformation undergoes substantial fluctuations resulted in the reduction of enzyme-substrate interactions. Zn ion coordinates with Aβ-peptide near the scissile peptide bond. Based on this information we have proposed catalytic mechanism of hECE-1 for Aβ-peptide degradation in which residue E 608 of hECE-1 plays an important role as a proton shuttle. The molecular basis of Aβ peptide cleavage by hECE-1 could aid in designing enzyme based therapies to control Aβ concentration in AD.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号