首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有23条查询结果,搜索用时 625 毫秒
1.
2.
The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/β-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and β-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors.  相似文献   
3.
Summary The changes in cell numbers of different thymic cell populations and the conditions governing the regeneration of these populations and the thymus itself were examined after X-irradiation (700 rads) of different parts of the body. The general effects of the irradiation were studied in each experimental group in terms of mortality and growth rate. The particular effects on each thymic cell population were studied by the measurement of mitotic activity and of evaluation of the changes in numbers among these populations in the thymus itself, and were compared with the effects in the granulopoietic layer of the liver and in the spleen. The great reduction in the number of lymphocytes after irradiation demonstrates that they are more radiosensitive than other cell types; this reduction can be compensated for by the arrival of new lymphoid cells originating from other lymphoid organs (if they have been protected from irradiation) and by allowing thymic regeneration. Thus, irradiation has indirect effects on non-irradiated areas, and demonstrates that the lymphoid cell population has a high potential for multidirectional migration.  相似文献   
4.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   
5.

Background

DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system.

Results

With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region.

Conclusions

With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.  相似文献   
6.
7.
8.
9.
Gastrointestinal stromal tumours (GISTs), the most common mesenchymal neoplasm of the gastrointestinal tract, result from deregulated proliferation of transformed KIT‐positive interstitial cells of Cajal that share mesenchymal progenitors with smooth muscle cells. Despite the identification of selective KIT inhibitors, primary resistance and relapse remain a major concern. Moreover, most patients develop resistance partly through reactivation of KIT and its downstream signalling pathways. We previously identified the Limb Expression 1 (LIX1) gene as a unique marker of digestive mesenchyme immaturity. We also demonstrated that LIX1 regulates mesenchymal progenitor proliferation and differentiation by controlling the Hippo effector YAP1, which is constitutively activated in many sarcomas. Therefore, we wanted to determine LIX1 role in GIST development. We found that LIX1 is strongly up‐regulated in GIST samples and this is associated with unfavourable prognosis. Moreover, LIX1 controls GIST cell proliferation in vitro and in vivo. Upon LIX1 inactivation in GIST cells, YAP1/TAZ activity is reduced, KIT (the GIST signature) is down‐regulated, and cells acquire smooth muscle lineage features. Our data highlight LIX1 role in digestive mesenchyme‐derived cell‐fate decisions and identify this novel regulator as a target for drug design for GIST treatment by influencing its differentiation status.  相似文献   
10.
Soft tissue sarcomas (STS) are rare, complex tumors with a poor prognosis. The identification of new prognostic biomarkers is needed to improve patient management. Our aim was to determine the methylation status of the 118 CpG sites in the PLAGL1 tumor-suppressor gene P1 CpG island promoter and study the potential prognostic impact of PLAGL1 promoter methylation CpG sites in STS. Training cohorts constituted of 28 undifferentiated sarcomas (US) and 35 leiomyosarcomas (LMS) were studied. PLAGL1 mRNA expression was investigated by microarray analysis and validated by RT-qPCR. Pyrosequencing was used to analyze quantitative methylation of the PLAGL1 promoter. Associations between global promoter or specific CpG site methylation and mRNA expression were evaluated using Pearson’s product moment correlation coefficient. Cox univariate and multivariate proportional hazard models were used to assess the predictive power of CpG site methylation status. Sixteen CpG sites associated with PLAGL1 mRNA expression were identified in US and 6 in LMS. Statistical analyses revealed an association between CpG107 methylation status and both overall and metastasis-free survival in US, which was confirmed in a validation cohort of 37 US. The exhaustive study of P1 PLAGL1 promoter methylation identified a specific CpG site methylation correlated with mRNA expression, which was predictive for both metastasis-free and overall survival and may constitute the first US-specific biomarker. Such a biomarker may be relevant for identifying patients likely to derive greater benefit from treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号