首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有33条查询结果,搜索用时 20 毫秒
1.
Ca,phospholipid-dependent (PKC) andcAMP-dependent (PKA) protein kinases phosphorylate the -subunit of the Na,K-ATPase from duck salt gland with the incorporation of 0.3 and 0.5 mol32P/mol of -subunit, respectively. PKA (in contrast to PKC) phosphorylates the -subunit only in the presence of detergents. Limited tryptic digestion of the Na,K-ATPase phosphorylated by PKC demonstrates that32P is incorporated into the N-terminal 41-kDa fragment of the -subunit. Selective chymotrypsin cleavage of phosphorylated enzyme yields a 35-kDa radioactive fragment derived from the central region of the -subunit molecule. These findings suggest that PKC phosphorylates the -subunit of the Na,K-ATPase within the region restricted by C3 and T1 cleavage sites.  相似文献   
2.
3.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   
4.
Na(+)-K(+)-ATPase is an integral membrane protein crucial for the maintenance of ion homeostasis and skeletal muscle contractibility. Skeletal muscle Na(+)-K(+)-ATPase content displays remarkable plasticity in response to long-term increase in physiological demand, such as exercise training. However, the adaptations in Na(+)-K(+)-ATPase function in response to a suddenly decreased and/or habitually low level of physical activity, especially after a spinal cord injury (SCI), are incompletely known. We tested the hypothesis that skeletal muscle content of Na(+)-K(+)-ATPase and the associated regulatory proteins from the FXYD family is altered in SCI patients in a manner dependent on the severity of the spinal cord lesion and postinjury level of physical activity. Three different groups were studied: 1) six subjects with chronic complete cervical SCI, 2) seven subjects with acute, complete cervical SCI, and 3) six subjects with acute, incomplete cervical SCI. The individuals in groups 2 and 3 were studied at months 1, 3, and 12 postinjury, whereas individuals with chronic SCI were compared with an able-bodied control group. Chronic complete SCI was associated with a marked decrease in [(3)H]ouabain binding site concentration in skeletal muscle as well as reduced protein content of the α(1)-, α(2)-, and β(1)-subunit of the Na(+)-K(+)-ATPase. In line with this finding, expression of the Na(+)-K(+)-ATPase α(1)- and α(2)-subunits progressively decreased during the first year after complete but not after incomplete SCI. The expression of the regulatory protein phospholemman (PLM or FXYD1) was attenuated after complete, but not incomplete, cervical SCI. In contrast, FXYD5 was substantially upregulated in patients with complete SCI. In conclusion, the severity of the spinal cord lesion and the level of postinjury physical activity in patients with SCI are important factors controlling the expression of Na(+)-K(+)-ATPase and its regulatory proteins PLM and FXYD5.  相似文献   
5.
Endurance training represents one extreme in the continuum of skeletal muscle plasticity. The molecular signals elicited in response to acute and chronic exercise and the integration of multiple intracellular pathways are incompletely understood. We determined the effect of 10 days of intensified cycle training on signal transduction in nine inactive males in response to a 1-h acute bout of cycling at the same absolute workload (164 +/- 9 W). Muscle biopsies were taken at rest and immediately and 3 h after the acute exercise. The metabolic signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), demonstrated divergent regulation by exercise after training. AMPK phosphorylation increased in response to exercise ( approximately 16-fold; P < 0.05), which was abrogated posttraining (P < 0.01). In contrast, mTOR phosphorylation increased in response to exercise ( approximately 2-fold; P < 0.01), which was augmented posttraining (P < 0.01) in the presence of increased mTOR expression (P < 0.05). Exercise elicited divergent effects on mitogen-activated protein kinase (MAPK) pathways after training, with exercise-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation being abolished (P < 0.01) and p38 MAPK maintained. Finally, calmodulin kinase II (CaMKII) exercise-induced phosphorylation and activity were maintained (P < 0.01), despite increased expression ( approximately 2-fold; P < 0.05). In conclusion, 10 days of intensified endurance training attenuated AMPK, ERK1/2, and mTOR, but not CaMKII and p38 MAPK signaling, highlighting molecular pathways important for rapid functional adaptations and maintenance in response to intensified endurance exercise and training.  相似文献   
6.
The skeletal muscle sodium pump plays a major role in the removal of K(+) ions from the circulation postprandial, or after a physical activity bout, thereby preventing the development of hyperkalemia and fatigue. Insulin and muscle contractions stimulate Na(+)-K(+)-ATPase activity in skeletal muscle, at least partially via translocation of sodium pump units to the plasma membrane from intracellular stores. The molecular mechanism of this phenomenon is poorly understood. Due to the contradictory reports in the literature, the very existence of the translocation of Na(+)-K(+)-ATPase to the skeletal muscle cell surface is questionable. This review summarizes more than 30 years work on the skeletal muscle sodium pump translocation paradigm. Furthermore, the methodological caveats of major approaches to study the sodium pump translocation in skeletal muscle are discussed. An understanding of the molecular regulation of Na(+)-K(+)-ATPase in skeletal muscle will have important clinical implications for the understanding of the development of complications associated with the metabolic syndrome, such as cardiovascular diseases or increased muscle fatigue in diabetic patients.  相似文献   
7.
Five mutations in the ligand-binding domain of the androgen receptor gene were identified in patients with complete (A765T, C784Y, R831X and M895T) or partial (R840G) androgen insensitivity. A765T and R831X have been reported previously whereas the other three mutations are novel. Receptors carrying these mutations were transiently expressed in COS-1 cells, and androgen binding and capacity to transactivate an androgen-responsive reporter gene were assayed. C784Y led to abolished androgen binding and transactivating capacity, R840G and M895T showed reduced specific binding and partial transactivation. The in vitro functions of the R840G and M895T mutants were improved with supraphysiological concentrations of steroid. Received: 10 June 1998 / Accepted: 10 September 1998  相似文献   
8.
9.
In vitro incubation of isolated rodent skeletal muscle is a widely used procedure in metabolic research. One concern with this method is the development of an anoxic state during the incubation period that can cause muscle glycogen depletion. Our aim was to investigate whether in vitro incubation conditions influence glycogen concentration in glycolytic extensor digitorum longus (EDL) and oxidative soleus mouse muscle. Quantitative immunohistochemistry was applied to assess glycogen content in incubated skeletal muscle. Glycogen concentration was depleted, independent of insulin‐stimulation in the incubated skeletal muscle. The extent of glycogen depletion was correlated with the oxidative fibre distribution and with the induction of hypoxia‐induced‐factor‐1‐alpha. Insulin exposure partially prevented glycogen depletion in soleus, but not in EDL muscle, providing evidence that glucose diffusion is not a limiting step to maintain glycogen content. Our results provide evidence to suggest that the anoxic milieu and the intrinsic characteristics of the skeletal muscle fibre type play a major role in inducing glycogen depletion in during in vitro incubations. J. Cell. Biochem. 107: 1189–1197, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
10.
The cardiotonic steroid, ouabain, a specific inhibitor of Na(+),K(+)-ATPase, initiates protein-protein interactions that lead to an increase in growth and proliferation in different cell types. We explored the effects of ouabain on glucose metabolism in human skeletal muscle cells (HSMC) and clarified the mechanisms of ouabain signal transduction. In HSMC, ouabain increased glycogen synthesis in a concentration-dependent manner reaching the maximum at 100 nM. The effect of ouabain was additive to the effect of insulin and was independent of phosphatidylinositol 3-kinase inhibitor LY294002 but was abolished in the presence of a MEK1/2 inhibitor (PD98059) or a Src inhibitor (PP2). Ouabain increased Src-dependent tyrosine phosphorylation of alpha(1)- and alpha(2)-subunits of Na(+),K(+)-ATPase and promoted interaction of alpha(1)- and alpha(2)-subunits with Src, as assessed by co-immunoprecipitation with Src. Phosphorylation of ERK1/2 and GSK3alpha/beta, as well as p90rsk activity, was increased in response to ouabain in HSMC, and these responses were prevented in the presence of PD98059 and PP2. Incubation of HSMC with 100 nM ouabain increased phosphorylation of the alpha-subunits of the Na-pump at a MAPK-specific Thr-Pro motif. Ouabain treatment decreased the surface abundance of alpha(2)-subunit, whereas abundance of the alpha(1)-subunit was unchanged. Marinobufagenin, an endogenous vertebrate bufadienolide cardiotonic steroid, increased glycogen synthesis in HSMC at 10 nM concentration, similarly to 100 nM ouabain. In conclusion, ouabain and marinobufagenin stimulate glycogen synthesis in skeletal muscle. This effect is mediated by activation of a Src-, ERK1/2-, p90rsk-, and GSK3-dependent signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号