首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
2.
The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   
3.
An investigation was directed towards biochemical characterization of cyanobacterium Calothrix elenkinii and analysis of the chemical nature and mode of action of its fungicidal metabolite(s) against oomycete Pythium debaryanum. Biochemical characterization of the culture in terms of carbohydrate utilization revealed the facultative nature of C. elenkinii. Unique antibiotic markers were also found for this strain. 16S rDNA sequencing of the strain revealed 98% similarity with Calothrix sp. PCC7101. The fungicidal activity was tested by disc diffusion assay of different fractions of the culture filtrate. A minimum inhibitory concentration of 10 μl was recorded for ethyl acetate fraction of the 7-weeks old culture filtrates. HPLC, followed by NMR spectral analysis demonstrated the presence of a substituted benzoic acid in the ethyl acetate fraction. Microscopic examination revealed distinct granulation, followed by disintegration of the hyphae of Pythium sp., indicating the presence of an active metabolite in the culture filtrates of Calothrix sp. The fungicidal activity of C. elenkinii can be attributed to the presence of 3-acetyl-2-hydroxy-6-methoxy-4-methyl benzoic acid. This is the first report of a benzoic acid derivative having fungicidal activity in cyanobacteria.  相似文献   
4.
Nanocomposite film composed of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNT), prepared electrophoretically onto indium tin oxide (ITO)-coated glass plate, was used for covalent immobilization of cholesterol oxidase (ChOx) via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.93 mM with high sensitivity of 6800 nA mM−1 and a fast response time of 10 s. Photometric studies for ChOx/PANI-MWCNT/ITO bioelectrode indicate that it is thermally stable up to 45 °C and has a shelf life of approximately 12 weeks when stored at 4 °C. The results of these studies have implications for the application of this interesting matrix (PANI-MWCNT) toward the development of other biosensors.  相似文献   
5.
6.
A library of fourteen 2-imino-4-thiazolidinone derivatives (1a-1n) has been synthesized and evaluated for in vivo anti-inflammatory activity and effect on ex-vivo COX-2 and TNF–α expression. Compounds 1k (5-(2,4-dichloro-phenooxy)-acetic acid (3-benzyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) and 1m (5-(2,4-dichloro-phenooxy)-acetic acid (3-cyclohexyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) exhibited in vivo inhibition of 81.14% and 78.80% respectively after 5 h in comparison to indomethacin which showed 76.36% inhibition of inflammation without causing any damage to the stomach. Compound 1k showed a reduction of 68.32% in the level of COX-2 as compared to the indomethacin which exhibited 66.23% inhibition of COX-2. The selectivity index of compound 1k was found to be 29.00 in comparison to indomethacin showing selectivity index of 0.476. Compounds 1k and 1m were also found to significantly suppress TNF-α concentration to 70.10% and 68.43% in comparison to indomethacin which exhibited 66.45% suppression.  相似文献   
7.
8.
An investigation was undertaken to evaluate a set of cyanobacterial strains in terms of production of biocidal compounds exhibiting allelochemical and fungicidal properties. Two cyanobacterial strains — Anabaena sp. and Calothrix sp. were selected for further investigation, on the basis of their larger inhibition zones on the lawn of Synechocystis and Synechococcus sp. and two phytopathogenic fungi — Rhizoctonia bataticola and Pythium debaryanum. The diameter of the inhibition zone was largest when extracellular filtrates of the two cultures incubated at high light intensity (90–100 μmol photons m−2 s−1) and temperature (40 ± 2 °C) or grown in medium containing two-folds higher P (1.4 mg/L, as compared to 0.7 mg/L in BG 11 medium) were taken. A pH of 8 was the most optimal for both strains, in terms of growth and biocidal activity. Partial purification of ethyl acetate extract using TLC, followed by GLC revealed a single peak. This study highlights the importance of environmental factors in aggravating or reducing the toxic effects of these harmful cyanobacteria and their potential as a biocontrol agent.  相似文献   
9.
Addition of excess trimethylphosphine and a halide source to a solution of W(CO)(acac)2(η2-L) (L = NCPh and OCMe2) leads to displacement of L and one acetylacetonate chelate to produce electron-rich, seven-coordinate complexes of the formula W(CO)(acac)(X)(PMe3)3 (X = Cl, Br, and I). Use of NaN3 instead of a halide source leads primarily to loss of carbon monoxide and dinitrogen, and protonation from adventitious water yields the cationic imido complex [W(NH)(acac)(PMe3)3]+. Heating [W(NH)(acac)(PMe3)3]+ in aromatic isocyanates at high temperature results in isocyanate insertion into the NH imido bond to form new C-N bonds. An alternate route to related imido complexes involves heating [W(O)(acac)(PMe3)3]+ with phenyl isocyanate at high temperatures to yield the substituted imido complex [W(NPh)(acac)(PMe3)3]+.  相似文献   
10.
DNA gyrase is a validated target of fluoroquinolones which are key components of multidrug resistance tuberculosis (TB) treatment. Most frequent occurring mutations associated with high level of resistance to fluoroquinolone in clinical isolates of TB patients are A90V, D94G, and A90V–D94G (double mutant [DM]), present in the larger subunit of DNA Gyrase. In order to explicate the molecular mechanism of drug resistance corresponding to these mutations, molecular dynamics (MD) and mechanics approach was applied. Structure-based molecular docking of complex comprised of DNA bound with Gyrase A (large subunit) and Gyrase C (small subunit) with moxifloxacin (MFX) revealed high binding affinity to wild type with considerably high Glide XP docking score of ?7.88 kcal/mol. MFX affinity decreases toward single mutants and was minimum toward the DM with a docking score of ?3.82 kcal/mol. Docking studies were also performed against 8-Methyl-moxifloxacin which exhibited higher binding affinity against wild and mutants DNA gyrase when compared to MFX. Molecular Mechanics/Generalized Born Surface Area method predicted the binding free energy of the wild, A90V, D94G, and DM complexes to be ?55.81, ?25.87, ?20.45, and ?12.29 kcal/mol, respectively. These complexes were further subjected to 30 ns long MD simulations to examine significant interactions and conformational flexibilities in terms of root mean square deviation, root mean square fluctuation, and strength of hydrogen bond formed. This comparative drug interaction analysis provides systematic insights into the mechanism behind drug resistance and also paves way toward identifying potent lead compounds that could combat drug resistance of DNA gyrase due to mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号