首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9541篇
  免费   1020篇
  国内免费   357篇
  2023年   58篇
  2022年   147篇
  2021年   307篇
  2020年   203篇
  2019年   258篇
  2018年   267篇
  2017年   194篇
  2016年   306篇
  2015年   430篇
  2014年   523篇
  2013年   543篇
  2012年   751篇
  2011年   702篇
  2010年   485篇
  2009年   399篇
  2008年   585篇
  2007年   516篇
  2006年   489篇
  2005年   475篇
  2004年   436篇
  2003年   426篇
  2002年   427篇
  2001年   169篇
  2000年   148篇
  1999年   158篇
  1998年   125篇
  1997年   82篇
  1996年   77篇
  1995年   72篇
  1994年   66篇
  1993年   66篇
  1992年   62篇
  1991年   53篇
  1990年   53篇
  1989年   36篇
  1988年   44篇
  1987年   39篇
  1986年   48篇
  1985年   50篇
  1984年   54篇
  1983年   44篇
  1982年   53篇
  1981年   53篇
  1980年   61篇
  1979年   47篇
  1978年   27篇
  1976年   28篇
  1975年   29篇
  1974年   31篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
2.
It has been demonstrated that caleosin alone is sufficient to stabilize artificial oil bodies. A series of recombinant caleosins, mutated with 3, 5, 8, 11, 13, 15, and 17 extra Lys residues and over‐expressed in Escherichia coli, were used as carrier proteins to render biotin as a hapten on the surface of artificial oil bodies for antibody production. Biotinylation levels of the recombinant caleosins were step‐wisely elevated as the number of extra Lys residues increased, and the biotinylated Lys residues were identified by mass spectrometric analysis. Polyclonal antibodies against biotin were successfully generated in rats injected with artificial oil bodies constituted with each of the biotinylated caleosins. Moreover, those generated via the biotinylated caleosins with eight or more extra Lys residues no longer recognized caleosin. It appears that engineered Lys‐rich caleosins are suitable carrier proteins for the production of antibodies against small molecules. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
3.
4.
The ecological significance of toxic nectar   总被引:18,自引:0,他引:18  
Lynn S. Adler 《Oikos》2000,91(3):409-420
Although plant-herbivore and plant-pollinator interactions have traditionally been studied separately, many traits are simultaneously under selection by both herbivores and pollinators. For example, secondary compounds commonly associated with herbivore defense have been found in the nectar of many plant species, and many plants produce nectar that is toxic or repellent to some floral visitors. Although secondary compounds in nectar and toxic nectar are geographically and phylogenetically widespread, their ecological significance is poorly understood. Several hypotheses have been proposed for the possible functions of toxic nectar, including encouraging specialist pollinators, deterring nectar robbers, preventing microbial degradation of nectar, and altering pollinator behavior. All of these hypotheses rest on the assumption that the benefits of toxic nectar must outweigh possible costs; however, to date no study has demonstrated that toxic nectar provides fitness benefits for any plant. Therefore, in addition to these adaptive hypotheses, we should also consider the hypothesis that toxic nectar provides no benefits or is tolerably detrimental to plants, and occurs due to previous selection pressures or pleiotropic constraints. For example, secondary compounds may be transported into nectar as a consequence of their presence in phloem, rather than due to direct selection for toxic nectar. Experimental approaches are necessary to understand the role of toxic nectar in plant-animal interactions.  相似文献   
5.

Background  

Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C)-terminal domains, though they offer limited character data. The few known spidroin amino (N)-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs) from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains.  相似文献   
6.
7.
Abstract The natural product cyanobacterin has been shown to be toxic to most cyanobacteria at a concentration of approx. 5 μM. We demonstrate here that cyanobacterin will also inhibit the growth of most eukaryotic algae at a similar concentration. Some algae, such as Euglena gracilis , are resistant because they are able to maintain themselves by heterotrophic nutrition. Others, such as Chlamydomonas reinhardtii , can apparently induce a detoxification mechanism to maintain photosynthesis in the presence of low concentrations of the inhibitor. Non-photosynthetic microorganisms are not affected by cyanobacterin.  相似文献   
8.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   
9.
10.
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号