首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2597篇
  免费   248篇
  国内免费   1篇
  2846篇
  2022年   19篇
  2021年   39篇
  2020年   23篇
  2019年   32篇
  2018年   25篇
  2017年   34篇
  2016年   68篇
  2015年   94篇
  2014年   88篇
  2013年   122篇
  2012年   199篇
  2011年   182篇
  2010年   118篇
  2009年   85篇
  2008年   189篇
  2007年   169篇
  2006年   164篇
  2005年   149篇
  2004年   136篇
  2003年   135篇
  2002年   168篇
  2001年   44篇
  2000年   31篇
  1999年   37篇
  1998年   48篇
  1997年   20篇
  1996年   21篇
  1995年   21篇
  1994年   27篇
  1993年   19篇
  1992年   28篇
  1991年   23篇
  1990年   14篇
  1989年   25篇
  1988年   13篇
  1987年   20篇
  1986年   13篇
  1985年   14篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   11篇
  1980年   15篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   6篇
  1973年   6篇
  1935年   5篇
排序方式: 共有2846条查询结果,搜索用时 15 毫秒
1.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
2.
The state of aggregation of the (Ca2+ + Mg2+)-ATPase in the membrane of sarcoplasmic reticulum and in reconstituted membrane systems has been studied using saturation-transfer electron spin resonance (ST-ESR). Saturation-transfer ESR spectra show that in the sarcoplasmic reticulum, the ATPase is relatively free to rotate, with an effective rotational correlation time of approx. 33 microseconds at 4 degrees C, consistent with a monomeric or dimeric structure. The rate of rotation is observed to decrease with decreasing molar ratio of lipid to protein. In reconstituted systems, rotational motion of the ATPase on the millisecond time scale ceases when the lipids are in the gel phase. Addition of decavanadate, which causes the formation of crystalline arrays in negatively stained electron micrographs, results in only a small reduction in rotation rate for the ATPase in the membrane. The experiments are interpreted in terms of a short-lived (on the millisecond time scale) protein-protein interaction, with the formation of crystalline clusters of ATPase molecules which form and melt rapidly.  相似文献   
3.
4.

Background  

Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C)-terminal domains, though they offer limited character data. The few known spidroin amino (N)-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs) from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains.  相似文献   
5.
6.
Abstract The natural product cyanobacterin has been shown to be toxic to most cyanobacteria at a concentration of approx. 5 μM. We demonstrate here that cyanobacterin will also inhibit the growth of most eukaryotic algae at a similar concentration. Some algae, such as Euglena gracilis , are resistant because they are able to maintain themselves by heterotrophic nutrition. Others, such as Chlamydomonas reinhardtii , can apparently induce a detoxification mechanism to maintain photosynthesis in the presence of low concentrations of the inhibitor. Non-photosynthetic microorganisms are not affected by cyanobacterin.  相似文献   
7.
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.  相似文献   
8.
Human cytomegalovirus (HCMV) is the leading viral cause of birth defects and life-threatening lung-associated diseases in premature infants and immunocompromised children. Although the fetal lung is a major target organ of the virus, HCMV lung pathogenesis has remained unexplored, possibly as a result of extreme host range restriction. To overcome this hurdle, we generated a SCID-hu lung mouse model that closely recapitulates the discrete stages of human lung development in utero. Human fetal lung tissue was implanted into severe combined immunodeficient (CB17-scid) mice and inoculated by direct injection with the VR1814 clinical isolate of HCMV. Virus replication in the fetal lung was assessed by the quantification of infectious virus titers and HCMV genome copies and the detection of HCMV proteins by immunohistochemistry and Western blotting. We show that HCMV efficiently replicated in the lung implants during a 2-week period, forming large viral lesions. The virus productively infected alveolar epithelial and mesenchymal cells, imitating congenital infection of the fetal lung. HCMV replication triggered apoptosis near and within the viral lesions and impaired the production of surfactant proteins in the alveolar epithelium. Our findings highlight that congenital and neonatal HCMV infection can adversely impact lung development, leading to pneumonia and acute lung injury. We have successfully developed a small-animal model that closely recapitulates fetal and neonatal lung development and provides a valuable, biologically relevant tool for an understanding of the lung pathogenesis of HCMV as well as other human respiratory viruses. Additionally, this model would greatly facilitate the development and testing of new antiviral therapies for HCMV along with select human pulmonary pathogens.  相似文献   
9.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(28):8188-8195
We have developed a procedure for the reconstitution of Escherichia coli diacylglycerol kinase (DGK) into phospholipid bilayers containing diacylglycerol substrate. When DGK is reconstituted into a series of phosphatidylcholines containing monounsaturated fatty acyl chains, activity against dihexanoylglycerol (DHG) as a substrate was found to be markedly dependent on the fatty acyl chain length with the highest activity in dioleoylphosphatidylcholine [di(C18:1)PC] and a lower activity in bilayers with shorter or longer fatty acyl chains. Low activities in the short chain phospholipid dimyristoleoylphosphatidylcholine [di(C14:1)PC] followed from an increase in the K(m) value for DHG and ATP, with no effect on v(max). In contrast, in the long chain lipid dierucoylphosphatidylcholine [di(C24:1)PC], the low activity followed from a decrease in v(max) with no effect on K(m). In mixtures of two phosphatidylcholines with different chain lengths, the activity corresponded to that expected for the average chain length of the mixture. Cholesterol increased the activity in di(C14:1)PC but slightly decreased it in di(C18:1)PC or di(C24:1)PC, effects that could follow from changes in bilayer thickness caused by cholesterol.  相似文献   
10.
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. J. Morphol. 277:556–564, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号