首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2022年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Journal of Evolutionary Biochemistry and Physiology - Electrocorticogram registration and analysis (electrocorticography, ECoG) is widely used in small-animal biomedical research. To date, a...  相似文献   
2.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.  相似文献   
3.
Rapid tRNA decay can result from lack of nonessential modifications   总被引:10,自引:0,他引:10  
The biological role of many nonessential tRNA modifications outside of the anticodon remains elusive despite their evolutionary conservation. We show here that m7G46 methyltransferase Trm8p/Trm82p acts as a hub of synthetic interactions with several tRNA modification enzymes, resulting in temperature-sensitive growth. Analysis of three double mutants indicates reduced levels of tRNA(Val(AAC)), consistent with a role of the corresponding modifications in maintenance of tRNA levels. Detailed examination of a trm8-delta trm4-delta double mutant demonstrates rapid degradation of preexisting tRNA(Val(AAC)) accompanied by its de-aminoacylation. Multiple copies of tRNA(Val(AAC)) suppress the trm8-delta trm4-delta growth defect, directly implicating this tRNA in the phenotype. These results define a rapid tRNA degradation (RTD) pathway that is independent of the TRF4/RRP6-dependent nuclear surveillance pathway. The degradation of an endogenous tRNA species at a rate typical of mRNA decay demonstrates a critical role of nonessential modifications for tRNA stability and cell survival.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号