首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2010年   1篇
  2007年   3篇
排序方式: 共有12条查询结果,搜索用时 546 毫秒
1.
The effect of preliminary short-term irradiation with He-Ne laser light (632.8 nm, 0.2 mW/cm2) of the thymus zone projection of male NMRI mice subjected to acute toxic stress on the responses of immune cells was studied. Stress was modeled by lipopolysaccharide injection, 250 mg/100 g of body weight, which induced a significant increase in the production of several macrophage cytokines, IL-1alpha, IL-1beta, IL-6, IL-10 and TNF-alpha. A single irradiation with laser light did not provoke considerable variations in NO production in cells but induced an enhancement in the production of heat shock proteins Hsp25, Hsp70, and Hsp90. Nevertheless, when irradiation with red laser light was applied prior to toxic stress, considerable normalization of production of nearly all cytokines studied and nitric oxide was observed. Moreover, the normalization of production of heat shock proteins has been shown in these conditions. Thus, preliminary exposure of a small area of animal skin surface provoked a significant lowering in the toxic effect of lipopolysaccharide.  相似文献   
2.
SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shown that RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion of the SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to the malfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.  相似文献   
3.
It was assumed previously that the mutator phenotype of the hms3 mutant was determined by processes taking place in the D-loop. As a next step, genetic analysis was performed to study the interactions between the hsm3 mutation and mutations of the genes that control the initial steps of the D-loop formation. The mutations of the MMS4 and XRS2 genes, which initiate the double-strand break formation and subsequent repair, were shown to completely block HSM3-dependent UV-induced mutagenesis. Mutations of the RAD51, RAD52, and RAD54 genes, which are also involved in the D-loop formation, only slightly decreased the level of UV-induced mutagenesis in the hsm3 mutant. Similar results were observed for the interaction of hsm3 with the mph1 mutation, which stabilizes the D-loop. In contrast, the shu1 mutation, which destabilizes the D-loop structure, led to an extremely high level of UV-induced mutagenesis and displayed epistatic interactions with the hsm3 mutation. The results made it possible to assume that the hsm3 mutation destabilizes the D-loop, which is a key substrate of both Rad5- and Rad52-dependent postreplicative repair pathways.  相似文献   
4.
Previously, we isolated mutant yeasts Saccharomyces cerevisiae with an increased rate of spontaneous mutagenesis. Here, we studied the properties of HSM6 gene, the hsm6-1 mutation of which increased the frequency of UV-induced mutagenesis and decreased the level of UV-induced mitotic crossover at the region between the centromere and ADE2 gene. HSM6 gene was mapped on the left arm of chromosome II in the region where the PSY4 gene is located. The epistatic analysis has shown that the hsm6-1 mutation represents an allele of PSY4 gene. Sequencing of hsm6-1 mutant allele has revealed a frameshift mutation, which caused the Lys218Glu substitution and the generation of a stop codon in the next position. The interactions of hsm6-1 and rad52 mutations were epistatic. Our data show that the PSY4 gene plays a key role in the regulation of cell withdrawal from checkpoint induced by DNA disturbances.  相似文献   
5.
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. T this pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens. Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms 1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis.  相似文献   
6.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   
7.
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. This pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens. Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis.  相似文献   
8.
In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of histone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-induced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the spontaneous mutagenesis rate in both single and double mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the homologous-recombination-based and the postreplicative DNA repair.  相似文献   
9.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants himl, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The himl and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   
10.
Long-term storage at +4°C and cultivation at +30°C changes the spontaneous mutation rate of the yeast Saccharomyces cerevisiae double mutants rad52hsm3Δ and rad52hsm6-1. Combinations of hsm3 and hsm6 mutations with rad52 mutation lead to a decrease of the spontaneous mutation rate mediated by DNA repair synthesis in multiply replanted strains in comparison with the same strains investigated right after RAD52 gene decay. Combinations of hsm3 and hsm6 mutations with mutations in other genes of the RAD52 epistatic group did not provide a spontaneous mutation rate decrease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号