首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   6篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Self‐incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S‐alleles from two distinct taxa, the possible artificial selection of self‐compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross‐genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self‐fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.  相似文献   
2.
In a mainly experimental science based traditionally on hypothesis testing such as ecology, studying futures may be difficult. However, in the last few decades, predicting the consequences of global changes on the dynamics and function of ecological systems has become a major challenge in ecological research. To study how ecological scientists deal with potential difficulties in studying futures, we adopted a reflexive viewpoint on how scientists address the study of ecological futures. To do so we questioned a panel of ecological scientists on their practical involvement and point of view. Quantitative and qualitative analyses of their responses showed that predictions or predictive models were the dominant theme. Many quantitative models, based on statistical correlations, empirical rules or processes have been developed and their methodological limitations explored by the researchers we interviewed. In a small proportion of studies, qualitative scenarios have been elaborated to explore the range of possible futures. Interviewees emphasized the problem of dealing with ecological complexity and multiple future possibilities. Specificities of futures compared to past or present events were not fully identified. In fact, researchers studying futures mainly adopted a reductionist approach, trying to simplify complex ecological systems. But methods and tools promoted by such an approach to science may not always be appropriate to deal with future ecological complexity. Indeed, an emphasis on prediction prevents ecologists from acknowledging the multiplicity and undetermined nature of futures.  相似文献   
3.
The urban environment was used to study the plant reproductive system in small fragmented populations as well as the potential adaptations of plants to urban conditions. We examined the effect of density on the pollination process and on reproduction in urban populations of the allogamous species Crepis sancta. The habitat is composed of small uncultivated square patches (c. 2 m2) regularly spaced along the pavement in streets of the city of Montpellier, France. Pollinator behaviour (the presence of pollinators, the number of flowers visited and the duration of each visit) and seed set as a function of the number of plants in patches and selfing rates, determined using progeny array analysis, were studied. The propensity for the urban populations to produce seeds by self-fertilization in insect-proof glasshouse was also analysed. We found strong evidence of reduced pollinator activities at low densities, resulting in reduced pollination and a reduction in seed set from 80 to 20% of ovules fertilized (the Allee effect). Progeny array analysis revealed a slight increase (marginally significant) in selfing rates in urban populations compared with large populations. In spite of lower pollinator activity, urban populations did not show a greater ability to self-fertilize compared with rural populations from the nearby countryside.  相似文献   
4.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   
5.
Optimizing the effect of management practices on weed population dynamics is challenging due to the difficulties in inferring demographic parameters in seed banks and their response to disturbance. Here, we used a long‐term plant survey between 2006 and 2012 in 46 French vineyards and quantified the effects of management practices (tillage, mowing, and herbicide) on colonization, germination, and seed survival of 30 weed species in relation to their seed mass. To do so, we used a recent statistical approach to reliably estimate demographic parameters for plant populations with a seed bank using time series of presence–absence data, which we extended to account for interspecies variation in the effects of management practices on demographic parameters. Our main finding was that when the level of disturbance increased (i.e., in plots with a higher number of herbicides, tillage, or mowing treatments), colonization success and survival in large‐seeded species increased faster than in small‐seeded species. High disturbance through tillage increased survival in the seed bank of species with high seed mass. The application of herbicides increased germination, survival, and colonization probabilities of species with high seed mass. Mowing, representing habitats more competitive for light, increased the survival of species with high seed mass. Overall, the strong relationships between the effects of management practices and seed mass provide an indicator for predicting the dynamics of weed communities under disturbance.  相似文献   
6.
Inbreeding depression was studied in two populations of a Mediterranean allogamous colonizing species Crepis sancta. In order to test the hypothesis that the magnitude of inbreeding depression can be modified by successional processes, the growth and survival of individuals resulting from two generations of inbred crosses including selfing were analysed with interspecific competition (in natural vegetation) and without interspecific competition (by removing natural vegetation). Inbreeding depression was weak for seed production. Germination was little affected by inbreeding but mortality and the number of capitula showed inbreeding depression, especially in the presence of competition. This suggests that inbreeding depression is very sensitive to variations in environmental conditions such as interspecific competition. As a consequence, inbreeding depression cannot be considered as constant in natural conditions.  相似文献   
7.
8.
The striking amount of variation in the mating systems of higher plants has stimulated fruitful research by both ecologists and population geneticists. Historically, these two schools of thought have developed independent theoretical treatments and empirical approaches to account for the evolution of such diversity. We highlight the approach adopted by each field. Population geneticists have developed an approach centred on gene properties of individuals and their role on the evolution of self-fertilisation (transmission rules and the deleterious role of mutations), while ecologists have mostly focused on demographic properties of self-fertilisation (seed production, colonisation ability of selfers). As a result, the two approaches sometimes use conflicting notions of fitness. The recent empirical advances on inbreeding depression, a topic typically motivated by population genetic questions, have emphasized the need to adopt a demographical perspective for fitness. In this paper, we suggest generalizing this approach in mating system evolution and we expect further improvements by integrating demographic and genetics perspectives.  相似文献   
9.
The evolution of selfing in hermaphrodites has been studied to reveal the demographic conditions that lead to intermediate selfing rates. Using a demographic model based on Ricker-type density regulation, we assume first that, independent of population density, inbred individuals survive less well than outbred individuals and second, that inbred and outbred individuals differ in their competitive abilities in density-regulated populations. The evolution of selfing, driven by inbreeding depression and the cost of outcrossing, is then analysed for three fundamentally different demographic scenarios: stable population densities, deterministically varying population densities (resulting from cyclical or chaotic population dynamics) and stochastic fluctuations of carrying capacities (resulting from environmental noise). We show that even under stable demographic conditions evolutionary outcomes are not confined to either complete selfing or full outcrossing. Instead, intermediate selfing rates arise under a wide range of conditions, depending on the nature of competitive interactions between inbred and outbred individuals. We also explore the evolution of selfing under deterministic and stochastic density fluctuations to demonstrate that such environmental conditions can evolutionarily stabilize intermediate selfing rates. This is the first study, to our knowledge, to consider in detail the effect of density regulation on the evolution of selfing rates.  相似文献   
10.
Plant chemical defenses and escape from natural enemies have been postulated to select for dietary specialization in herbivorous insects. In field and laboratory bioassays, we evaluated the effectiveness of intact and chemically modified larval shield defenses of the generalist Chelymorpha alternans and the specialists Acromis sparsa and Stolas plagiata (Chrysomelidae: Cassidinae) against three natural predators, using larvae reared on two morning glory (Convolvulaceae) species. We assessed whether: (1) specialists were better defended than generalists when both were fed and assayed on the same plant; (2) larval shield defenses were chemical, physical, or both; and (3) specialists exploit chemistry better than generalists. Live specialist larvae survived at higher rates than did generalists in predator bioassays with the bug Montina nigripes (Reduviidae), but there were no differences among groups against two species of Azteca ants (Hymenoptera: Dolichoderinae). Solvent leaching by H2O or MeOH significantly reduced shield efficacy for all species compared to larvae with intact shields. In contrast, freshly killed specialist larvae exhibited significantly lower capture rates and frequencies than the generalists. Although solvent leaching significantly reduced overall shield efficacy for freshly killed larvae of all species, the pattern of leaching effects differed between specialists and generalists, with H2O-leaching having a greater impact on the specialists. The overall vulnerability of the generalists appears due to lower chemical protection, which is ameliorated by increased escape behaviors, suggesting a selective trade-off between these defensive components. These experiments indicate that shield defenses are essential for larval survival and that specialists are superior at exploiting plant compounds residing in the aqueous fraction. Our results support the hypothesis that diet-specialized herbivorous insects have more effective defenses than generalists when both feed on the same plant due to the differential ability to exploit defensive precursors obtained from the host. The evolution of dietary specialization may therefore confer the advantage of enhanced enemy-free space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号