首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   4篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
2.
Wang  Ying  Yan  Chenming  Qi  Junxia  Liu  Chunyan  Yu  Juan  Wang  Huabin 《Molecular and cellular biochemistry》2022,477(1):307-317
Molecular and Cellular Biochemistry - The resistance to cisplatin, the most common platinum chemotherapy drug, may confine the efficacy of treatment in epithelial ovarian cancer patients. Aberrant...  相似文献   
3.
Ricin B (RTB), the non-toxic lectin subunit of ricin, is a promising mucosal adjuvant and carrier for use in humans. RTB fusion proteins have been expressed in tobacco hairy root cultures, but the secreted RTB component of these proteins was vulnerable to protease degradation in the medium. Moreover, castor bean purified RTB spiked into tobacco hairy root culture media showed significant degradation after 24 h and complete loss of product after 72 h. Aqueous two-phase extraction (ATPE) was tested for fast recovery of RTB not only to partially purify the protein but also to improve its stability. Two different polyethylene glycol (PEG)/salt/water systems including PEG/potassium phosphate and PEG/sodium sulfate, were studied. RTB was shown to be favorably recovered in PEG/sodium sulfate systems. Statistical analysis indicated that the ionic strength of the system and the sodium sulfate concentration were important in optimizing the partition coefficient of RTB. A selectivity of almost three could be achieved for RTB in optimized systems, and RTB partitioned in the PEG-rich phase exhibited extended stability. Therefore, ATPE was shown to be effective in initial recovery/purification and stabilization of RTB and may hold promise for other unstable secreted proteins from hairy root culture.  相似文献   
4.
The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37–BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.  相似文献   
5.
Peatland soils contain large amounts of nitrogen (N) in the soil and mineralization can contribute substantially to the annual mineral N supply of grasslands. We investigated the contribution of N mineralization from peat with respect to the total annual N uptake on grasslands with anthropogenic A horizons and submerged tile drains. The study included i) a pot experiment to determine potential N mineralization from the topsoil and the subsoil, ii) a 1-year field experiment to study herbage yields and N uptake under fertilized and non-fertilized conditions and iii) a 3-year field study where herbage yield and N uptake from the top 30 cm and the entire soil profile were monitored. The 3-year field study yielded an average N uptake of 342 kg?ha?1 under non-fertilized conditions but the contribution of subsoil peat N mineralization to the total N uptake was found to be negligible. Our calculations demonstrate that peat N mineralization contributed only 10% to 30% to the total N-uptake, mainly coming from the top 30 cm. Most of the N uptake under unfertilized conditions appears to be largely the result of mineralization from long-term inputs of dung, ditch sludge, farmyard manure, cow slurry and non-harvested herbage.  相似文献   
6.
The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3′ UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways.  相似文献   
7.
根癌农杆菌介导转化马铃薯与抗病毒基因工程   总被引:1,自引:0,他引:1  
病毒侵染一直是导致马铃薯品种退化的主要因素,严重影响马铃薯的产量和品质。近年来,随着基因工程的迅速发展和转基因技术体系的日益完善,基因工程技术在提高马铃薯抗病性(尤其是抗病毒)方面显示了极大的潜力,必将成为马铃薯抗病毒育种的主要手段。对其进展进行了综述,并讨论了根癌农杆菌介导马铃薯遗传转化及其体系优化因素。最后提出存在问题及发展趋势,以供广大马铃薯抗病毒育种工作者参考。  相似文献   
8.
为了探讨溶瘤疱疹病毒表达病毒融膜糖蛋白对食管癌细胞的杀伤效果,采用基因酶切技术构建携带GALV.fus基因的致融性溶瘤疱疹病毒Synco-l和Synco-2以及非致融性溶瘤疱疹病毒Baco-1,通过体内外实验观察三种病毒对食管癌细胞Eca-109的杀伤效果。结果发现,Synco-1和Synco-2能引起食管癌细胞融合,有效地杀灭食管癌细胞。体外实验Synco-1和Synco-2能分别使Eca-109细胞存活率降低至28%和25%,体内实验能使实体肿瘤体积明显缩小,接种4周后,均能使小鼠70%的癌细胞完全消失,其杀伤食管癌细胞的效果明显强于非致融性溶瘤疱疹病毒Baco-1。实验结果提示,溶瘤疱疹病毒通过表达病毒融膜糖蛋白能显著增强其抗肿瘤效果,Synco-1和Synco-2有可能成为治疗食管癌的有效工具。  相似文献   
9.
The past 5 years have seen the commercialization of two recombinant protein products from transgenic plants, and many recombinant therapeutic proteins produced in plants are currently undergoing development. The emergence of plants as an alternative production host has brought new challenges and opportunities to downstream processing efforts. Plant hosts contain a unique set of matrix contaminants (proteins, oils, phenolic compounds, etc.) that must be removed during purification of the target protein. Furthermore, plant solids, which require early removal after extraction, are generally in higher concentration, wider in size range, and denser than traditional bacterial and mammalian cell culture debris. At the same time, there remains the desire to incorporate highly selective and integrative separation technologies (those capable of performing multiple tasks) during the purification process from plant material. The general plant processing and purification scheme consists of isolation of the plant tissue containing the recombinant protein, fractionation of the tissue along with particle size reduction, extraction of the target protein into an aqueous medium, clarification of the crude extract, and finally purification of the product. Each of these areas will be discussed here, focusing on what has been learned and where potential concerns remain. We also present details of how the choice of plant host, along with location within the plant for targeting the recombinant protein, can play an important role in the ultimate ease of recovery and the emergence of regulations governing plant hosts. Major emphasis is placed on three crops, canola, corn, and soy, with brief discussions of tobacco and rice.  相似文献   
10.
Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号