首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   12篇
  国内免费   15篇
  2024年   1篇
  2023年   9篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   4篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
2.
3.
Zhang  Yang  Gao  Xu  Shen  Zongzhuan  Zhu  Chengzhi  Jiao  Zixuan  Li  Rong  Shen  Qirong 《Plant and Soil》2019,439(1-2):553-567
Plant and Soil - Plant growth-promoting rhizobacteria (PGPR) substantially improve plant growth and health, but their effects on the succession of rhizosphere microbiota throughout the growth...  相似文献   
4.
Long  Huiping  Zhong  Gang  Wang  Chengzhi  Zhang  Jian  Zhang  Yueling  Luo  Jinglian  Shi  Shengliang 《Neurochemical research》2019,44(8):1830-1839
Neurochemical Research - The pathogenesis of late-onset Alzheimer's disease (LOAD) mainly involves abnormal accumulation of extracellular β-amyloid (Aβ) and the consequent neurotoxic...  相似文献   
5.
用PCR法获得了HBsAgpreS1(1-65)肽段基因,将该基因融合在肿瘤坏死因子(hTNFα)之后,插入表达载体PSB-92中,使融合基因的5′端直接置于大肠肝菌PL启动子下游,采用30℃培养,42℃诱导,获得了TNF与preS1(1-65)融合蛋白的表达产物。SDS-PAGE电泳显示表达产物为25kD,约占细菌总蛋白的35%。表达产物经Westernblot验证,能分别特异地与hTNFα抗体与preS1抗体结合,稀释复性后,该融合蛋白还具有TNF的生理功能(对L929细胞的细胞毒活性)。经DNA序列测定,preS1(1-65)肽基因正确地融合在hTNFα基因之后。该结果提供了一种制备preS1的新方法,为进一步开展治疗肝癌和乙肝的导向药物打下基础。  相似文献   
6.
氨基酸微素络合物对水稻的生物效应初探   总被引:8,自引:0,他引:8  
为了配制氨基酸金属络合肥,使用其主组分进行初步田间对比试验,结果表明:氨基酸微素络合物能明显提高水稻根系活力,缩短从秧田到大田的适应期,促进植株生长,改善库源关系,增加干粒重和谷秆比,从而有效提高产量。以(FeCuZn)AA2增产效果最好,达21.29%,蘸根及喷施是有效施用方式。  相似文献   
7.
Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H2O2) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H2O2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.  相似文献   
8.
9.
Heme oxygenase-1 is an inducible cytoprotective gene, although its induction by environmental factors is not completely understood. This study aimed to ascertain if specific nutritive factors or related compounds influence heme oxygenase-1 expression. In HCT-116 cells, cadmium increased heme oxygenase-1 enzymatic activity. This effect of cadmium was weaker in cells made iron-deficient with the iron chelator, desferrioxamine, which was associated with repression of heme oxygenase-1 protein and mRNA expression. The repression by desferrioxamine of cadmium-induced heme oxygenase-1 upregulation was reversed upon iron replenishment of the cells. Additionally, it was found that thiol antioxidants inhibited the heme oxygenase-1 upregulation caused by cadmium and also by ethacrynic acid, which each decreased intracellular glutathione as did buthionine sulfoxamine. Interestingly, cadmium and ethacrynic acid increased nuclear translocation of Nrf2 and subsequent heme oxygenase-1 expression, but buthionine sulfoxamine did not. Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin, and a superoxide scavenger (Tiron) inhibited cadmium-induced upregulation of heme oxygenase-1. Diphenyleneiodonium was the most potent and inhibited NADPH-cytochrome P450 reductase as well, whereas apocynin and Tiron did not. It is concluded that adequate amounts of iron, which at the atomic level can serve as the pivotal element of heme in NADPH oxidase, must be present in cells to permit what appears to be thiol redox-sensitive, NADPH oxidase-dependent upregulation of heme oxygenase-1. Thus, these findings are significant because they suggest that cells without adequate iron would be unable to fully express the stress gene, heme oxygenase-1, when confronted with the toxic metal, cadmium.  相似文献   
10.
Xu X  Xie C  Edwards H  Zhou H  Buck SA  Ge Y 《PloS one》2011,6(2):e17138

Background

Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML.

Methodology

Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis.

Results

Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis.

Conclusion

Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号