首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   62篇
  2023年   8篇
  2022年   16篇
  2021年   34篇
  2020年   22篇
  2019年   12篇
  2018年   23篇
  2017年   14篇
  2016年   38篇
  2015年   40篇
  2014年   44篇
  2013年   41篇
  2012年   39篇
  2011年   37篇
  2010年   24篇
  2009年   24篇
  2008年   23篇
  2007年   14篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
  1958年   1篇
  1952年   1篇
  1950年   1篇
  1949年   1篇
  1938年   1篇
  1920年   1篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
1.
2.
Evidence for the presumed linkage between the enigmatic rodlet cells of fish and exposure to helminths is anecdotal and indirect. We evaluated the proliferation and development of rodlet cells in the optic lobes of fathead minnows exposed to cercariae of Ornithodiplostomum ptychocheilus. Mean rodlet cell densities (ca. 10/mm2) in the optic lobes were similar between unexposed controls and minnows with 1- and 2-week old infections. Rodlet cell densities increased at 4 weeks p.i., reaching maxima (ca. 200/mm2) at 6 weeks p.i., followed by a decline at 9 weeks. This temporal pattern of proliferation and maturation paralleled the development of metacercariae within the optic lobes. Unencysted metacercariae develop rapidly within tissues of the optic lobes for approximately 4 weeks after penetration by cercariae, then shift to the adjacent meninges to encyst. The former stage is associated with tissue damage, the latter with massive inflammation of the meninges. Thus, peak densities and maturation of rodlet cells correspond to the period when inflammation of the meninges caused by the large metacercarial cysts is at a maximum. Our results support recent contentions that rodlet cells comprise part of the host inflammatory defence response.  相似文献   
3.
4.
5.
6.
Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf.   总被引:7,自引:6,他引:1       下载免费PDF全文
We have previously reported that immobilized p21ras forms a GMPPNP-dependent complex with a MEK activity. Furthermore, the association of the MEK activity was found to be independent of the presence of Raf-1. We have extended those observations to show that MEK1 is the MEK activity previously described to associate with immobilized p21ras.GMPPNP. The association between MEK1 and immobilized p21ras.GMPPNP increased its specific activity towards p42MAPK. We detected the specific association of B-Raf with immobilized p21ras.GMPPNP. In contrast to Raf-1-immunodepleted lysates, preclearance of the cytosolic B-Raf significantly reduced, by 96%, the amount of MEK1 activity associated with immobilized p21ras.GMPPNP. The decrease in MEK1 activity correlated with complete loss in the binding of both B-Raf and MEK1 proteins with immobilized p21ras.GMPPNP. These data suggest that the p21ras.GMPPNP-dependent activation of MEK1 in brain extracts is dependent on the presence of the B-Raf protein kinase.  相似文献   
7.
In this study, we examine the effects of binding to protein upon nucleotide conformation, by the comparison of X-ray crystal structures of free and protein-bound nucleotides. A dataset of structurally non-homologous protein-nucleotide complexes was derived from the Brookhaven Protein Data Bank by a novel protocol of dual sequential and structural alignments, and a dataset of native nucleotide structures was obtained from the Cambridge Structural Database. The nucleotide torsion angles and sugar puckers, which describe nucleotide conformation, were analysed in both datasets and compared. Differences between them are described and discussed. Overall, the nucleotides were found to bind in low energy conformations, not significantly different from their 'free' conformations except that they adopted an extended conformation in preference to the 'closed' structure predominantly observed by free nucleotide. The archetypal conformation of a protein-bound nucleotide is derived from these observations.  相似文献   
8.
Mesenchymal-derived stromal or progenitor cells, commonly called “MSCs,” have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.  相似文献   
9.
Ultraconserved noncoding elements (UCNEs) constitute less than 1 Mb of vertebrate genomes and are impervious to accumulating mutations. About 4000 UCNEs exist in vertebrate genomes, each at least 200 nucleotides in length, sharing greater than 95% sequence identity between human and chicken. Despite extreme sequence conservation over 400 million years of vertebrate evolution, we show both ordered interspecies and within-species interindividual variation in DNA methylation in these regions. Here, we surveyed UCNEs with high CpG density in 56 species finding half to be intermediately methylated and the remaining near 0% or 100%. Intermediately methylated UCNEs displayed a greater range of methylation between mouse tissues. In a human population, most UCNEs showed greater variation than the LINE1 transposon, a frequently used epigenetic biomarker. Global methylation was found to be inversely correlated to hydroxymethylation across 60 vertebrates. Within UCNEs, DNA methylation is flexible, conserved between related species, and relaxed from the underlying sequence selection pressure, while remaining heritable through speciation.  相似文献   
10.
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号